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Introduction
The organic conductor, (Per),Au(mnt), undergoes a charge density wave (CDW) phase transition when cooled below 12K.

With a strong enough magnetic field [1] and applied pressure, the CDW is suppressed and the Fermi surface is observed
through the appearance of quantum interference oscillations [2] between the Q1D sheets predicted from band structure

calculations [3].
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Small single crystals were mounted in a double-clamped BeCu pressure
cell for conventional four terminal transport measurements. The
magnetic field was held constant as the pressure cell was rotated with the
conducting chain of the sample (b-axis) parallel to the rotation axis.
Temperatures as low as 300 mK were achieved while using the NHMFL
mK facility (SCM2) and dc fields (31T resistive magnet) for these
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The angular dependent magnetoresistance (ADMR) is shown in Fig. 1a, = Fil ::;T_,;,__ f_';_,‘ ' .
where alignment between the field and a and c crystallographic axes are £ AR i pry .
indicated. Black arrows show the features which do not change angular £ [ ! ot L] ol Lt ]
location with different magnetic fields. Fig. 1b shows these features in n; B  BOT v A PRI
greater detail from the second derivative of the ADMR data. The red NP ; NE _&"":"jg}:
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arrows show features which shift angle location when a different A oAt L 4 WAL TG 16T
magnetic field is applied (i.e. orbital effects). Q“’:: W, . 45*»:‘::}:
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The observed angular dependent phenomenon may be explained within : o 44
the context of carrier coherence. When a strong magnetic field is applied £
along one of the directions indicated in Fig. 1c, the real space width of
the carrier trajectory can be limited such that the carriers as confined
within “layers”. [4] Away from these “magic angle” orientations,
scattering and MR become larger as the coherence decreases. The MR
background is more complex than with the (TMTSF),X compounds,
most likely due to a residual CDW state, even under pressure.
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Fig. 1. (a) Magnetoresistance (MR) measurements at constant fields
with the rotation axis parallel to the conducting chains and P ~ 6.0
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