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Introduction 
 
Nanotube materials have a vast range of potential applications, including molecular separation, environmental remediation, 
drug delivery and catalysis.  Suitability for a particular application can be optimized by tuning the interactions and molecular 
transport dynamics inside the tubes or near the tube openings. Restricted diffusion in one-dimensional (1D) channels, where 
the diffusing particles are too large to pass one-another, leads to single-file diffusion (SFD). The distinguishing feature of 
SFD is that the mean-square displacement (MSD) is proportional to the square root of the diffusion time, MSD 2F t= , 
where F, the single-file mobility, depends on the loading, channel structure, guest-host interactions. In SFD, the motions of 
the diffusing particles are necessarily correlated, and hence SFD is slower than “normal” 1D diffusion, where MSD 2Dt= . 
Here we summarize the results of a laser polarized tracer exchange NMR study in L-alanyl-L-valine (AV) peptide nanotubes.  
 
Experimental 
 
The spin-exchange optical pumping system is described in Ref. [1]. Experiments were performed using a modified single-
channel Bruker wide-line NMR probe. The volume of sample holder within the detection coil region is approximately 6 μl 
which can accommodate roughly 10mg of AV sample. The 3.2mm (O.D.) PFA tubing was connected to the inlet and outlet 
of the sample holder with gas-tight fittings. In the laser polarized tracer exchange method, the adsorbed phase 129Xe is 
selectively saturated using a train of shaped radiofrequency pulses.  Freshly polarized 129Xe atoms flow into the sample 
region and diffuse into the nanotubes. SFD limits the build-up of the 129Xe longitudinal magnetization in the nanotube phase.  
 
Results and Discussion 
 
Saturation-recovery experiments were conducted at T=-10oC at a series of Xe pressures. Typical data, obtained after dividing 
by the integrated gas phase signal, are presented in the figure. Fitting yielded the steady-state amplitude and Rn.  Invoking a 
2-site exchange model and assuming Langmuir adsorption at pressure p and “coverage” θ , the following master equations 
for the nuclear spin Zeeman order in the gas and channel phases ( ,z zcI I ) can be derived.  
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The solution of these equations, assuming long channels of average length l  and excess laser polarized Xe gas, yields 
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Laser polarized tracer exchange curves as a 
function of the channel filling factor, θ, 
obtained at  at T=-10oC 

A similar expression can be derived from diffusion propagator theory [2] 
but does not yield the signal amplitude relative to the gas. The data agree 
qualitatively with the  dependence predicted by the hard-
spheres model for F. 
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Conclusions 
 
We have reported the first observation of molecular transport in peptide 
nanotubes. The tracer exchange-recovery inside AV channels following 
NMR saturation exhibits the clear signature of SFD, where MSD t∝ .    
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