NATIONAL HIGH MAGNETIC FIELD LABORATORY
2004 RESEARCH REPORT

HIGH-FREQUENCY AND -FIELD EPR OF A PSEUDO-OCTAHEDRAL COMPLEX OF
HIGH-SPIN Fe(I1): BIS(2,2'-BI-2-THIAZOLINE)BIS(ISOTHIOCYANATO)IRON(II)

A. Ozarowski, J. Krzystek, S. A. Zvyagin, Louis-Claude Brunel (NHMFL), William M. Reiff,
(Northeastern U., Chemistry), Joshua Telser, (Roosevelt U., Chemistry)

Introduction

High-spin Fe(I1) is a non-Kramers (integer spin) ion of typically very large zero-field splitting, on the order of ~5 to 20 cm™.
The allowed EPR transitions thus generally appear at high frequencies, and/or at high magnetic fields. Successful EPR
studies on the iron(I1) compounds are very infrequent. The title compound can be obtained in two crystalline forms®, of which
one exhibits a thermally driven ‘spin-crossover’ transition becoming diamagnetic below 170 K, while the other form, studied
here, remains paramagnetic down to the liquid helium temperatures. The X-Ray structures of both forms are known®.

Experimental

Magnetic susceptibility was measured over the temperature range 1.8-300 K using a SQUID magnetometer. Mdssbauer
studies were also performed. EPR spectra were taken at the NHMFL using both the 15/17 Tesla instrument and the 25 Tesla
‘Keck’ magnet equipped with tunable backwards-wave oscillators. Maximum frequency of ca. 700 GHz was employed?.
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The relatively temperature-independent quadrupole splitting of the >’Fe Mésshauer
spectrum of ~3.0 mm/s is consistent with an isolated, orbitally non-degenerate S=2
ground state of the metal ion. Temperature dependence of the magnetic
susceptibility allowed for estimation of the D parameter of the standard spin
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Hamiltonian: D ~ +12 cm™. The EPR spectra at sufficiently high operating :

frequencies consist of five strong, well-defined resonances. Rather than fitting the 4

spin Hamiltonian parameters to single-frequency spectra, we obtained a two- K

dimensional dataset of the resonant fields versus transition energies, as shown by L i .7 P
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complete dataset of resonances yielded D = +12.427(12), E = +0.243(3) cm™; gy = L L 0>~{t*> 0>t Energy (cm’)

2.147(3), gy = 2.166(3), 9, = 2.01(1) Resonance field vs. microwave quantum
energy for EPR transitions. Squares:
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structure of Fe(I1). We used the full d® basis set and the following parameters
moderately altered from the literature data®, chiefly by including a larger trigonal splitting (values in cm™): Racah B = 750, C
= 3400; Ballhausen crystal-field, Dq = 1100, Ds = 370, and spin-orbit coupling, ¢ = 368 (A =-92), which yield a true spin
quintet, orbitally non-degenerate ground state with axial zero-field splitting, D = +12.5 cm™. The heteroleptic nature of our
compound as opposed to homoleptic [Fe(im)¢]** in® makes an AOM analysis more difficult in our case, and we have not
attempted it nor tried to model the small rhombic zero-field splittinhg term observed.
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