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The nature of the interlayer transport in the quasi-2D organic conductors, and in particular whether it is coherent, incoherent
or “weakly” incoherent, has attracted significant interest recently, both experimentally [1,2] and theoretically [2,3]. Previous
ambient pressure studies of angle dependent magnetoresistance oscillations (AMRO) and magnetic quantum oscillations in

the superconducting K - phase BEDT-TTF salts have yielded estimates of the inter- and intra-layer quasiparticle dispersion.
A peak in the magnetoresistance occurring when the magnetic field is directed close to parallel to the layers is indicative of
coherent interlayer transport; a quantitative estimate of the magnitude of the transfer integral in the interlayer direction can be
obtained from the angular width of the peak [1,2]. In addition, the effect of pressure on the superconductivity has been
studied [4], demonstrating a strong correlation between the size of the superconducting energy gap and the quasi-particle
density of states at the Fermi energy. Here, we have combined these methodologies to investigate how pressure affects the
effective mass (quasi-particle density of states), the inter- and intra-layer transfer integrals. Measurements of these parameters
will reveal how the coherence of the interlayer transport evolves with pressure, and will allow a comparison with theories of
unconventional superconductivity invoking Fermi-surface nesting and spin fluctuations (see, for example, [5]).

We have performed AMRO under hydrostatic pressures using a miniature diamond anvil cell (DAC) on x — (BEDT-TTF),
Cu (NCS),. Samples of dimensions ~150 x 100 x 50 um, were mounted in a DAC using pressed gold wire attached to the
sample using graphite paint. The DAC was mounted on a two-axis goniometer that was placed in a 32 mm bore resistive
magnet at the NHMFL in Tallahassee; we were able to perform angle-dependent measurements in temperatures down to 500
mK in fields of up to 33 T, using standard 4-wire AC lock-in techniques at hydrostatic pressures of 9.8 and 17.2 kbar.

In Figure 1, the magnetoresistance as a function of temperature is shown for one sample at two different pressures. At these
pressures superconductivity is completely suppressed, in agreement with previous studies [2]. With increasing field two
Shubnikov de-Haas oscillations are observed superimposed on a positive background magnetoresistance. The higher (j3)
frequency oscillation is associated with a quasiparticle orbit that encloses an area equal to the whole Brillouin zone, allowing
us to extract its area, Apz; the values obtained are very similar to previously reported experimental values [4], with Agz =
3.84x 10 ™" m™ and 3.89 x10™"" m™ at 9.8 kbar and 17.2 kbar respectively. The left-hand graph in Figure 2 shows polar
angle AMRO sweeps taken at 9.8 kbar, for a range of azimuthal orientations (indicated to the right). The right-hand graph in
Figure 2, shows a close-up of the AMRO with the field directed almost parallel to the layers, showing the peak associated
with coherent interlayer transport. Using these data, the evolution of the intra- and inter-layer Fermi surface parameters can
be obtained as a function of pressure; these results will be discussed in detail elsewhere [6].
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Figure 1: Magnetoresistance at different temperatures for Figure 2: Left: AMRO taken with B=30 T, T=0.5 K and P
samples at two different hydrostatic pressures, on the left = 9.8 kbar. Right: close-up showing the coherence peak at
9.8 kbar and on the right 17.3 kbar. three different pressures.
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