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Spintronics: present
• Magnetic storage is already an established industry

• A magnetic domain on a hard disk has many spins

• However, the quantum nature of single spins is 
already used in some devices, such as “giant 
magnetoresistance” spin-valve read heads

• The goal of “spintronics” is to replace many types 
of charge-based electronics with spin.  Possible 
advantages are lower power consumption and 
smaller device size (Si charge limit: c. 2025).

Spin changes across junction: high R
Spin constant across junction: low R

(figure from IBM)



Spintronics: future
• Medium-term goal: transistors in which spin 

currents rather than charge currents perform 
classical logic operations

• Long-term goal: coherent spin manipulation for 
quantum logic operations (“quantum computing”) 

Quantum computing requires being able to create and 
manipulate superpositions: difficult, but extremely powerful

Classical computing with spin requires only “up” and 
“down” states—much less demanding

Note: Optical measurements of spin coherence use 
techniques similar to those discussed in this talk



What is a spin current?
Intuitive examples:

a spin-polarized current of electrons is one in which all electrons are in 
the same spin state: this current carries both charge and spin.

Example of a pure spin current:
suppose n spin-up electrons move with velocity v,
and n spin-down electrons move with velocity -v.

Then there is zero net charge current, but there is a current of spin:

More formally, spin current carries two vector indices

J i
j = current of spin direction i in spatial direction j

spin velocity



Science of spin currents
There are some key differences between spin and charge currents

Perhaps the most fundamental is that spin, unlike charge, is not conserved:

Spin is one type of angular momentum, but conservation of angular momentum allows 
spin to convert to orbital angular momentum via spin-orbit coupling (L • S).



Science of spin currents
There are some key differences between spin and charge currents

Perhaps the most fundamental is that spin, unlike charge, is not conserved:

Spin is one type of angular momentum, but conservation of angular momentum allows 
spin to convert to orbital angular momentum via spin-orbit coupling (L • S).

The advantage of spin-orbit coupling is that atomic transitions driven by light (“electric 
dipole” transitions) can be used to induce a spin.

The disadvantage is that the time over which spin is a conserved quantity in solids can be 
rather short: (e.g., 100 ps in experiments I’ll discuss).  We will see consequences of this 
later on...

What are some other differences?

1. sensitivity to interactions     2. symmetries and Hall effect



Experimental introduction: spin drag

We outline

I. the “transient grating” method for spin 
dynamics

II. how it has been used to observe “spin 
drag” experimentally



Spin dynamics in 2D: transient grating optical 
measurement of spin Coulomb drag

It is difficult to access large time and length scales by 
neutron scattering determination of S(q,w).
An alternate method is by following the evolution of a 
grating of spin density:

C. Weber, N. Gedik, J. Moore, J. Orenstein, J. Stephens, D. 
Awschalom (Nature, 2005)

Test case:
evolution in S(q,t) of a spin density 
grating in high-density 2DEGs with B=0

Micron length scales and picosecond 
time scales: spin effectively conserved, 
but Coulomb interaction transfers 
momentum from up to down

first observation of “Coulomb drag” 
between up and down spins in a layer

optical pump: 2 cross-polarized beams
write a (circular) polarization grating

then probe in the same way
(picosecond time resolution)
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Spin dynamics in 2D: transient grating optical 
measurement of spin Coulomb drag

C. Weber, N. Gedik, J. Moore, J. Orenstein, J. Stephens, D. 
Awschalom (Nature, 2005)

Spin drag is a fundamental difference between spin transport and charge 
transport, especially on short times where spin is conserved.

Momentum-conserving collisions of nearly free electrons do not modify 
the electron current, but do modify the spin current: the diffusion of spin 
density is found to be much slower than the diffusion of charge density.

(no umklapp)



Spin dynamics in 2D: transient grating optical 
measurement of spin Coulomb drag

S(q, ω) ∝
1

iω − D(q, ω)q2
, D(q, ω) =

vF /2
√

(iω/vF − 1/l)2 + q2

1. Extract spin current 
relaxation time by 
kinetic-theory fit



Spin dynamics in 2D: transient grating optical 
measurement of spin Coulomb drag

S(q, ω) ∝
1

iω − D(q, ω)q2
, D(q, ω) =

vF /2
√

(iω/vF − 1/l)2 + q2

1. Extract spin current 
relaxation time by 
kinetic-theory fit

2. Compare to charge 
current relaxation 
time; extract “spin drag 
transresistivity”

Ds

Dc

=
1

1 + |ρ↑↓|/ρ

transresistivity=
(drag voltage)/(original current)



Spin dynamics in 2D: transient grating optical 
measurement of spin Coulomb drag

Results:
1. spin diffusion is much less rapid 
(factor of 5-10) than charge 
diffusion, at T = 300K ~ EF

2. drag effect vanishes as T2 at low 
temperatures, because phase space 
for scattering is reduced.

Ds

Dc

=
1

1 + |ρ↑↓|/ρ

These results are consistent with theoretical predictions
(D’Amico and Vignale, PRB 2001)

Even when spin is conserved, spin currents are fundamentally 
different from charge currents in their sensitivity to interactions



Remaining puzzle: behavior at low density

We just argued that in a metal, Ds < Dc.

In an insulating magnet (e.g., Hubbard model at half-
filling), Dc = 0 but spin excitations can still 
propagate, so Ds > Dc.

Prediction: as the quantum well density is decreased, and the Coulomb 

repulsion drives a transition to an insulating “Wigner crystal”, the sign of the 

“drag” effect will change.

Challenge in doing a serious calculation: the Wigner crystal transition is 

typically quite sensitive to disorder.

New today: using Coulomb drag between wires in a field
for spin current generation: cond-mat/0606185, Pustilnik, Mishchenko, Starykh



Spin Hall effect
Another fundamental difference between spin 
and charge currents is related to symmetry.

The ordinary Hall effect of electrons in a metal, and its 
quantized cousin (the quantum Hall effect or QHE), are 
both of the form

(This part I will just sketch, as it seems to have more 
implications for physics than chemistry at the moment)

Ji = αεijkEjBk



Spin Hall effect
Another fundamental difference between spin 
and charge currents is related to symmetry.

The ordinary Hall effect of electrons in a metal, and its 
quantized cousin (the quantum Hall effect or QHE), are 
both of the form

Ji = αεijkEjBk

Under the “time reversal” operation T, velocities and 
currents like J change sign, as does B (but not E).
(Note: this is why spontaneous magnetization is referred 
to as broken time-reversal symmetry.)



Spin Hall effect
Another fundamental difference between spin 
and charge currents is related to symmetry.

The ordinary Hall effect of electrons in a metal, and its 
quantized cousin (the quantum Hall effect or QHE), are 
both of the form

Symmetry permits a dissipationless spin Hall effect:

because spin currents are even under time-reversal 
(although now inversion symmetry must be broken).

Ji = αεijkEjBk

J i
j = σ

s
HεijkEk



Two classes of SHE

One mechanism for a spin Hall current is via impurity 
scattering (the extrinsic SHE: theory 1970s, expt. 2004)

Recent excitement has centered on the existence of an 
“intrinsic” SHE that arises from the band structure of a 
clean material.
The first proposals (Murakami et al, Sinova et al., 2003-2004) involved doped 
semiconductors with no gap in the band structure, but at least the most 
experimentally realizable of these models was found to be unstable to disorder.

Inversion symmetry breaking needed to choose a direction: in triangular n-doped 
GaAs quantum wells, triangular shape generates a Rashba term that drives SHE:

J i
j = σ

s
HεijkEk

H
′ = λ(k × σ)z



Quantized SHE

Just in the last year, different and more stable versions of 
the SHE have been developed that bear a close 
resemblance to the quantum Hall effect.

These models are believed to be more stable to 
disorder, on the basis of analytic arguments and explicit 
numerics for the case without electron interactions (D. 
Sheng et al., PRL 2005).

If an intrinsic SHE exists, it offers a way to create large 
spin currents using only an applied electric field.

J i
j = σ

s
HεijkEk



The quantum Hall effect (1)

Why is the ordinary (charge) QHE so robust?

Many pictures: here is one that is useful for the SHE,
based on the edge of the 2D Hall “droplet”

Jy =

ne2

h
Ex

Electronic states in the bulk of the sample
fall into “Landau levels” spaced by

∆E = h̄ωc =
h̄eB

mc



The quantum Hall effect (3)
When the Fermi level is in a gap between Landau levels, 
the only gapless excitations that can respond to an 
applied field are at the edge.

Each edge is a one-dimensional conductor

and is chiral: has a specific
direction (a one-way street!)

Jy =

ne2

h
Ex

The number of levels that become gapless at 
the edge determines the Hall conductivity



The quantum Hall effect (3)
Each edge is a one-dimensional conductor

and is chiral: has a specific
direction (a one-way street!) Jy =

ne2

h
Ex

The number of levels that become gapless at 
the edge determines the Hall conductivity



The quantum spin Hall effect
Haldane showed that although broken time-reversal is necessary 
for the QHE, it is not necessary to have a net magnetic flux.

Imagine constructing a system for which spin-up electrons feel a 
pseudofield along z, and spin-down electrons feel a pseudofield 
along -z.

Then SU(2) (spin rotation symmetry) is broken, but time-
reversal symmetry is not:

an edge will have (in the simplest case)
a clockwise-moving spin-up mode
and a counterclockwise-moving spin-down mode



The quantum spin Hall effect
This looks very unstable: since SU(2) is broken, can’t disorder 
scatter electrons from the spin-up edge to the spin-down edge?

It will turn out that there is an enhanced stability when there is 
a single pair of time-reversed edge modes (one right-mover and 
one left-mover): a spin-half particle cannot scatter within a 
time-reversed pair (a Kramers pair) if the overall Hamiltonian is 
T invariant.
(Xu and Moore, 2006; Wu, Bernevig, and Zhang, 2006)

This case seems to be realized by the QSHE in a single 
graphene layer (Kane and Mele, PRL 2005).
Stability to both disorder and interactions can be understood simply looking at the edge.



Importance beyond the SQHE

Aside from possible spin transport measurements, the 
deeper significance of this idea is that, in 2D, there are

exactly two topological classes of T-invariant band insulators

the “ordinary” insulator, which has an even number of 
Kramers pairs of edge modes (possibly zero)

and the “topological” insulator, which has an odd number 
of Kramers pairs of edge modes

(In 3D there are 16 classes of insulators)



Topological properties of IQHE
TKNN, 1982: the conductance is related to an integral 
over the magnetic Brillouin zone:

Niu, Thouless, Wu, 1985: more generally, introducing “twist angles” around the two 
circles of a torus and considering the (assumed unique) ground state as a function of 
these angles,

This quantity (the “first Chern class” of the U(1) fiber bundle) is an integer.  For T-
invariant systems where the twists couple to the wavefunction phase, it is zero.
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What about the SQHE
If a quantum number (e.g., Sz) can be used to divide 
bands into “up” and “down”, then with T invariance,
one can define a “spin Chern number” that counts the 
number of Kramers pairs of edge modes:

n↑ + n↓ = 0, n↑ − n↓ = 2ns



What about the SQHE?
If a quantum number (e.g., Sz) can be used to divide 
bands into “up” and “down”, then with T invariance,
one can define a “spin Chern number” that counts the 
number of Kramers pairs of edge modes:

For general spin-orbit coupling, there is no conserved quantity that can be used to 
classify bands in this way.   (Even if there is a way to classify bands, Sz may not be 
conserved, so that the spin current need not be quantized; only the number of edge 
modes is quantized.)

n↑ + n↓ = 0, n↑ − n↓ = 2ns



What about the SQHE
If a quantum number (e.g., Sz) can be used to divide 
bands into “up” and “down”, then with T invariance,
one can define a “spin Chern number” that counts the 
number of Kramers pairs of edge modes:

For general spin-orbit coupling, there is no conserved quantity that can be used to 
classify bands in this way.   (Even if there is a way to classify bands, Sz may not be 
conserved, so that the spin current need not be quantized; only the number of edge 
modes is quantized.)

In the bulk, one can show that the Chern number can only change by an even 
integer: each band has a Z2 invariant analogous to the integer Chern number
(Moore and Balents, cond-mat).

One goal of this talk is to give a physical picture of this, looking at the edge.

n↑ + n↓ = 0, n↑ − n↓ = 2ns



Z2 topological invariants
Each band of a time-reversal-invariant insulator has a Z2 invariant analogous to the 
integer Chern number, even when no additional quantities are conserved.
(Moore and Balents, cond-mat)

Consider a 2D Brillouin torus.

There are 4 points that are self-conjugate under time reversal (k = -k).

C

!

B

A

!

B

A

C

(a) (b)



Z2 topological invariants
The Bloch Hamiltonians at points related by time-reversal are conjugate to each 
other, not necessarily identical.

The set of independent points (the effective Brillouin zone or EBZ) is then shown in 
(b) below: it has the topology of a cylinder with special boundary conditions. 

C

!

B

A

!

B

A

C

(a) (b)

H(−k) = TH(k)T−1



Z2 topological invariants
The Bloch Hamiltonians at points related by time-reversal are conjugate to each 
other, not necessarily identical.

The set of independent points (the effective Brillouin zone or EBZ) is then shown in 
(b) below: it has the topology of a cylinder with special boundary conditions. 

C

!

B

A

!

B

A

C

(a) (b)
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Z2 topological invariants
An abstract definition of the ordinary Chern number (Avron, Seiler, Simon):

if C is the space of Bloch Hamiltonians, then mappings from the torus to C are 
classified by one integer for each band, with a zero sum rule.

Why?  

C

!

B

A

!

B

A

C

(a) (b)

π2(C) = Z
n−1

, π1(C) = 0.

πn(M) = equivalence classes of maps from Sn to M



Z2 topological invariants
Key idea for the T-invariant case:
Consider all possible ways of “contracting” a mapping from the EBZ to one from a 
sphere, to define a Chern integer.

There are an infinite number of possible ways, differing by all even Chern numbers.

Need to show that the difference between two “contractions” is even:

C

!

B

A

!

B

A

C

(a) (b)



Z2 topological invariants
Key idea for the T-invariant case:
Consider all possible ways of “contracting” a mapping from the EBZ to one from a 
sphere, to define a Chern integer.

There are an infinite number of possible ways, differing by all even Chern numbers.

Need to show that the difference between two “contractions” is even.
This results from the symmetries at the two circular boundaries of the cylinder.
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Z2 topological invariants
Conclusions on topological classes:

there is 1 Z2 invariant (even Chern numbers or odd Chern numbers) per T-related 
pair of bands, with a zero sum rule;

the state of a system is the sum of Z2 invariants of occupied bands, just like the sum 
of ordinary Chern number determines the IQHE phase:

if the sum is odd, then the system is a topological insulator, with a robust spin Hall 
effect; if the sum is even, then the system is deformable to an ordinary insulator.

In three dimensions, there are 4 Z2 invariants per band (only a little more 
complicated to show).



The quantum spin Hall effect
Why are some band structures more stable than others?
Graphene = semimetal + SO coupling (creates gap)
(First observation of the QHE in graphene was in 2005!)

Edge picture: consider scattering within a T-reversed pair,

With interactions, multiple-particle scattering is important, and the full SHE phase 
diagram can be obtained using a bosonization analysis.

1. There is a wide range of stability with interactions when the Z2 index predicts 
stability without interactions.

2. interactions can actually stabilize the edge, even when the Z2 index predicts an 
instability in the noninteracting case (example: 2 pairs of edge modes).

〈ψ|H ′|φ〉 = 〈Tφ|H ′|Tψ〉 = 〈ψ|H ′|T 2φ〉 = −〈ψ|H ′|φ〉



The quantum spin Hall effect
Basic idea of bosonization (chiral and nonchiral “Luttinger liquids”)

represent low-energy physics of interacting Fermi system by free Boson action

one chiral boson per propagating mode:

Add terms that represent (spatially random) scattering 
of particles from one mode to another:

Key physics of spin Hall edges: the scattering process 
that normally leads to 1D localization is forbidden

S =
1

4π

∫
dτ dx ∂xφ(∂τφ − v∂xφ)

S1 =

∫
dx dτ (ξ(x)eiφ1e−iφ2 + h.c.)



The quantum spin Hall effect
Key physics of spin Hall edges: the scattering process 
that normally leads to 1D localization is forbidden

This survives for a finite strength of interactions.  For 
sufficiently strong repulsive interactions, two-particle 
scattering becomes relevant and causes localization.

A surprising fact: the case with two edge modes is
unstable in the absence of interactions, but can be 
stabilized by turning on a finite strength of either 
attractive or repulsive interactions
(but in the repulsive case, the tuning is delicate)



The quantum spin Hall effect
Summary: the edge of the SQHE is an unusual 1D 
localization problem because of the selection rule on 
particle scattering that results from T-invariance and 
fermionic statistics.

It is robust to weak disorder and finite interactions.  
(Note that the spin current in Sz units is not quantized; it is the existence of 
propagating edge modes that is robust.)

Now: a few comments on when graphene is a topological 
insulator



Why graphene?

H0 = −t
∑

〈ij〉

c†iσcjσ + iλv

∑

i

ξic
†
iσciσ

The spin-independent part consists of a tight-binding term
on the honeycomb lattice, plus possibly a sublattice staggering

The spin-dependent part contains two SO couplings

The second (Rashba) term depends on violation of z mirror 
symmetry, and is assumed small.

The first spin-orbit term is the key: it couples to second-
neighbor hopping, is mirror symmetric, and vij is ±1 depending 
on the sites.  (It is not clear how large this term really is.)

H
′ = iλSO

∑

〈〈ij〉〉

vijc
†
is

z
cj + iλR

∑

〈ij〉

c
†
i (s × d̂ij)zcj



Why graphene?
H0 = −t

∑

〈ij〉

c†iσcjσ + iλv

∑

i

ξic
†
iσciσ

Without the Rashba term, Sz is conserved, the problem 
decouples and a Chern number is defined for each band.

For small enough Rashba term, even though Sz is not 
conserved, there is still a topological classification that is much 
weaker: there is one Z2 (ordinary or “topological” insulator) 
per band, and whether the system has a spin Hall effect just 
depends on whether the Z2 sum is even or odd.

H
′ = iλSO

∑

〈〈ij〉〉

vijc
†
is

z
cj + iλR

∑

〈ij〉

c
†
i (s × d̂ij)zcj



Quantum entanglement
Sometimes a pure quantum state of a bipartite system 
AB is also a pure state of each subsystem separately:

Example: Sz=1 state of two s=1/2 spins

Sometimes a pure quantum state of a bipartite system 
AB is not a pure state of each subsystem separately:

Example: singlet state of two s=1/2 spins

|ΨAB〉 = | ↑A〉 ⊗ | ↑B〉

a “product” state

|ΨAB〉 =
1√
2

(| ↑A〉 ⊗ | ↓B〉 − | ↓A〉 ⊗ | ↑B〉)

an “entangled” state



Quantum information

|ΨAB〉 =
1√
2

(| ↑A〉 ⊗ | ↓B〉 − | ↓A〉 ⊗ | ↑B〉)

an “entangled” state

In an entangled state, the state of subsystem A or B is 
not a pure quantum state, but rather a density matrix

For the singlet

ρA =

(

1

2
0

0
1

2

)

= ρB

A classical uncertainty or entropy has been created 
by the operation of looking at only part of the system.



Quantum information
Definition: the bipartite entanglement of a pure state,

with respect to a partition into A and B,
is the von Neumann entropy of the partial density matrices

Example: The singlet generates one bit of classical 
entropy when the two spins are divided

Note that the partial density matrix for subsystem A
gives the results of experiments limited to A

〈φ1|ρA|φ2〉 =
∑

j

(〈φ1| × 〈ψj |)|ψ〉〈ψ|(|φ2〉 × |ψj〉)

S(ρ) = −TrρA log2 ρA = −TrρB log2 ρB



Quantum information
Definition: the bipartite entanglement of a pure state,

with respect to a partition into A and B,
is the von Neumann entropy of the partial density matrices

Note that the partial density matrix for subsystem A
gives the results of experiments limited to A:

entanglement entropy is indistinguishable from any 
other kind of entropy if only A is visible

〈φ1|ρA|φ2〉 =
∑

j

(〈φ1| × 〈ψj |)|ψ〉〈ψ|(|φ2〉 × |ψj〉)

S(ρ) = −TrρA log2 ρA = −TrρB log2 ρB



CM uses of entanglement entropy

Why should you care?

Claim:

the entanglement of quantum states is related to coding 
efficiency, since an unentangled (product) state requires many 
fewer classical bits for its storage than a generic state.

Example:
how many classical real numbers are required to 

describe a product state of N spins?  O(N)

vs. exponentially many for a general QM state 

|Ψ〉 = (a1| ↑1〉 + b1| ↓1〉) ⊗ (a2| ↑2〉 + b2| ↓2〉) ⊗ . . . ⊗ (aN | ↑3〉 + bN | ↓3〉)



How much entanglement entropy occurs in ground 
states of real materials?

We now understand that ground states of “typical” local 
Hamiltonians generate more entropy than occurs in a product state, 
but far less than occurs in a generic quantum state.

Away from critical points (i.e., when correlations are short-ranged), 
entanglement is localized in the vicinity of the boundary.

Old result: At clean and conformally invariant quantum critical points 
in d=1, there is universal logarithmic entanglement with a coefficient 
related to the “central charge” of the CFT (Vidal et al.).

At criticality, the entanglement of a connected subset of N spins, with 
all the remaining spins, is

Example of a critical quantum ground state:
(c=1)

lim
N→∞

SN =
c

3
log N

H = J
∑

i

si · sj , J > 0



How much entanglement entropy occurs in ground 
states of real materials?

Some recent analytic progress (2004-present):
0. The universal log in 1D conformally invariant QCPs
has a nice geometric interpretation
(Calabrese and Cardy, 2004)

1. Entanglement entropy has a log divergence with 
universal coefficient even for random spin chains in 1D: 
this is a universal measure of critical entropy at QCPs
(G. Refael and JEM,  PRL 2004)

2. Entanglement entropy of free fermions in any 
dimension scales as Ld-1 log L, i.e., violates the area law
(Gioev and Klich, PRL 2005; Wolf, PRL 2005)

3. Some 2D cases can be understood as an area law 
plus universal logarithmic corrections
(E. Fradkin and JEM, cond-mat 2006)



Progress toward physics goals

Entanglement entropy has been argued to underlie the 
success of DMRG in one dimension, and used to 
generate new algorithms for dynamics in 1D and statics 
in higher-dimensional correlated systems not amenable 
to other methods.
Vidal, Verstraete, Cirac, White, Schollwoeck, ...

Needed:

1. experiments to probe many-body entanglement, as a 
logical step en route to quantum computing

2. hard but important problems of interacting quantum 
spins in 2D on which to test these new algorithms!

THE END.



Entanglement entropy and future directions

It turns out that even at random quantum critical points, such 
universal scaling exists and defines a critical entropy.

Example: random Heisenberg antiferromagnet (same as before, but 
now J on each bond is drawn from a random distribution)
(Refael and Moore, PRL 2004)

Examples include the random quantum Ising and random Heisenberg 
chains.  The entanglement corresponds to an irrational ``central 
charge’’ but seems to satisfy some properties familiar from the clean 
case: a c-theorem; c(Heisenberg) = 2 c (Ising).  Some of our results 
have been exactly confirmed numerically in work by N. Laflorencie 
(UBC).

J1

P(J) = random distribution over J > 0 
(antiferromagnetic couplings)

J2 J3 J4



Entanglement entropy and future directions

Real-space functional renormalization group for P(J):
(Dasgupta-Ma, D. Fisher)

Example: random Heisenberg chain

1. Locate strongest coupling in the chain (e.g., J2).  Form singlet 
between its neighboring spins to minimize its energy.

2. Remove singlet from low-energy theory; compute effective residual 
coupling between next-nearest-neighbor spins.

J1 J2 J3 J4

J4Jeff

Jeff ∼

J1J3

2J2



Entanglement entropy and future directions

This process of forming singlets and effective couplings generates the 
following functional RG equation for the coupling distribution:

The theory is self-consistent if the final distribution on large length 
scales is very broad, so that the largest coupling is typically much 
larger than its neighbors.

Then the second-order perturbation theory result used to generate 
the RG equation is justified.

J4Jeff

Jeff ∼

J1J3

2J2

∂ρ(ξ,Γ)

∂Γ
=

∂ρ

∂ξ
+ ρ(0,Γ)

∫
∞

0

dξ−

∫
∞

0

dξ+ δ(ξ − ξ+ − ξ−)ρ(ξ+,Γ)ρ(ξ−,Γ)



Entanglement entropy and future directions

This process of forming singlets and effective couplings generates the 
following functional RG equation for the coupling distribution:

For entanglement entropy, we need to obtain the mean number of 
singlets that form across a boundary.

The main subtlety in the calculation is a “memory” effect: after 
decimation, the newly created effective J is weaker than an average 
J, and hence less likely to be decimated.

This corresponds to a repulsion between decimation events in RG 
time, which gives a factor of 1/3 correction to a simple estimate.

J1 J3 J4



Entanglement entropy and future directions

Numerical confirmation of irrational central charge for one case 
(XX chain->free fermions) by N. Laflorencie, UBC (PRB 2005)

HXXZ = J!
j
"1

2
#Sj

+Sj+1
− + Sj

−Sj+1
+ $ + !Sj

zSj+1
z % , #5$

the noncritical regime #achieved if &!&"1$ can be investi-
gated using the corner transfer matrices of the corresponding
two-dimensional #2D$ classical problem.11,12 On the other
hand, along the critical line #−1#!#1$, an analytical com-
putation of S#x$ is more difficult and conformal field theory
#CFT$ tools are then required.6 Another alternative consists
in performing numerical exact diagonalizations #ED$ of finite
lengths spin chains, but it is limited to Lmax'40 spins 1

2
when !!0.13 Nevertheless, the XX point !=0 is special
because the spin Hamiltonian can be rewritten using the
Jordan-Wigner transformation as a free-fermions model

HXX =
J

2!
j

(cj
†cj+1 + cj+1

† cj) #6$

for which the density matrix can be expressed as the expo-
nential of a free-fermion operator.14 It turns out that the re-
duced density matrix is completely determined by the x$x
correlation matrix C#x$, defined by

C#x$ =*+c1
†c1, +c1

†c2, ¯ +c1
†cx,

+c2
†c1, +c2

†c2, ! ]
] !

+cx
†cx,
- . #7$

The matrix elements Cij = +ci
†cj, can be calculated either nu-

merically by diagonalizing the free-fermion Hamiltonian in
momentum space or analytically in some special cases.15 The
entanglement entropy of a subsystem of size x embedded in
a larger system is then given by

S#x$ = − !
k

(%k ln %k + #1 − %k$ln#1 − %k$) , #8$

where the %k are the eigenvalues of C#x$.
Let us now concentrate on the disordered XX spin-1

2
chain, governed by the random hopping Hamiltonian on a
periodic ring of length L

HXX = !
j=1

L−1

Jj(cj
†cj+1 + cj+1

† cj) + JL exp#i&N$#cL
†c1 + c1

†cL$ ,

#9$

where Jj are positive random numbers chosen in a flat uni-
form distribution within the interval (0,1),16,17 and the second
term in the right-hand side ensures that periodic boundary
conditions are imposed in the spin problem. The total num-
ber of fermions is N=L /2 in the ground-state #GS$. The way
to diagonalize HXX is straightforward and has already been
explained by several authors.18,19 As a check, we have first
computed the entanglement entropy #8$ for clean systems
#i.e., Ji is a constant$ of total sizes L=500 and L=2000.
Technically, this only involves computing the elements +ci

†cj,
by diagonalizing the free-fermions Hamiltonian #6$, and then
one needs to diagonalize C (Eq. #7$) using standard linear
algebra routines.20 The results are shown in Fig. 2 where we
can see that S#L ,x$ is perfectly described by the CFT pre-
diction Eq. #3$. Note also that the constant term is found to
be s1'0.726, in excellent agreement with the recent analyti-
cal prediction of Jin and Korepin.21

For the random case, the same technique has been used
but a bigger computational effort was necessary to average
over a large number of independent random samples. Practi-
cally the number of samples used was 2$104 for L=100,
200, 300, 400, and 104 for L=500,1000,2000 which re-
quired 2000 h of CPU computational time. The results for

FIG. 2. #Color online$ Entanglement entropy of a subsystem of size x embedded in a closed ring of size L, shown vs x in a log-linear plot.
Numerical results obtained by exact diagonalizations performed at the XX point. For clean nonrandom systems with L=500 and L=2000
#open circles$, S#x$ is perfectly described by Eq. #3$ #red and blue curves$. The data for random systems have been averaged over 104

samples for L=500, 1000, 2000, and 2$104 samples for 100#L#400. The expression 0.8595+ #ln 2 /3$ln x #dashed line$ fits the data in the
regime where finite size effects are absent.

NICOLAS LAFLORENCIE PHYSICAL REVIEW B 72, 140408#R$ #2005$
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Entanglement entropy and future directions

The upshot is that we now believe that essentially any local 
Hamiltonian generates only short-ranged entanglement in the ground 
state.

This motivates a new class of numerical methods: search for 
correlated ground states variationally within a class of locally 
entangled states (e.g., “matrix product states”, Ostlund and Rommer, 
1995).

It has even been proven in some cases that the ground state is well 
described by some matrix product state, but



Entanglement entropy and future directions

The upshot is that we now believe that essentially any local 
Hamiltonian generates only short-ranged entanglement in the ground 
state.

This motivates a new class of numerical methods: search for 
correlated ground states variationally within a class of locally 
entangled states (e.g., “matrix product states”, Ostlund and Rommer, 
1995).

It has even been proven in some cases that the ground state is well 
described by some matrix product state, but

the remaining computational challenge is to ensure that the search 
process does converge to the optimal matrix product state.

This could advance greatly theoretical understanding of some of the 
models mentioned earlier: for example,

frustrated magnets and magnetic molecules
fermionic correlated systems (cuprates and other Mott insulators)



Entanglement entropy and future directions

Why is c, the “central charge”, so important physically in conformal 
field theories? (mathematical definition is via Virasoro algebra or OPE 
of stress-energy tensor)

It is a standard measure of entropy at critical points: for example, a 
quantum critical point in 1D described by a CFT of central charge c 
has low-temperature free energy per length (Affleck 1986)

A fundamental property of c is the “c-theorem”:
if a relevant operator at critical point A takes the system to critical 
point B, then

The decrease of c along RG trajectories is consistent with the 
interpretation of RG as “integrating out” degrees of freedom.

f =
F

L
= f0 −

π

6
c(kT )2h̄v

cB ≤ cA



Applications to condensed matter theory

What about entanglement in higher dimensions?

Free fermions can show either a pure area law (Ld-1) or an additional 
logarithm (Ld-1 log L) depending on the nature of the Fermi surface 
(Wolf; Klich and Gioev).  (Fermions are actually quite special!)
Note that in both these cases, there must be a dimensionful 
(nonuniversal) scale factor.

For general critical points, the answer is unknown.

With E. Fradkin and M. Negrete, we have recently obtained the 
entanglement entropy for “conformal quantum critical” points in 2D:
(e.g., quantum dimer model).

We find universal logarithmic corrections for some geometries.

Historical note: the original appearance of the entanglement entropy 
area law was to understand why black holes have “holographic” 
entropy (S ~ A, the area of the event horizon).
(Bombelli et al.; 1986 Srednicki 1993)



2D conformal quantum critical points

Example: critical point of quantum dimer model
Hilbert space basis: classical dimer coverings of square lattice

H = −t(flip plaquettes with parallel dimers) + V (count flippable plaquettes)

H = −t
∑

(

| 〉〈
∣

∣

∣

∣| + |
∣

∣

∣

∣〉〈 |
)

+ V
∑

(

| 〉〈 | + |
∣

∣

∣

∣〉〈
∣

∣

∣

∣|
)

H =









n1V −t 0 0 −t . . .

−t n2V −t 0 0 . . .

0 −t n3V 0 0 . . .
.
.
.

.

.

.
.
.
.

.
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
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Resulting form of Hamiltonian matrix:

Here the diagonal terms counts the number of flippable 
plaquettes, which is also the number of nonzero off-diagonal 
elements

At t=V, equal-weight superposition is an exact E=0 eigenstate:
quantum critical wavefunction with correlations given by 
classical critical model (dimer packings).

Continuum wavefunction: one free boson (c=1 CFT)

2D conformal quantum critical points

H =









n1V −t 0 0 −t . . .

−t n2V −t 0 0 . . .

0 −t n3V 0 0 . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .









|ψ〉 = e−SE({φ})/2|{φ}〉



Result I: von Neumann entropy of such a wavefunction under a 
partition into A and B is determined by free energy in the CFT:

Here the first two terms are with Dirichlet boundary 
conditions at the AB boundary.

Now use M. Kac result on “hearing the shape of a drum”:
for a 2D connected region with smooth boundary,

2D conformal quantum critical points

S = FA + FB − FA∪B

FA ∼ f0(L/a)2 + fs(L/a) −
cχ

6
log(L/a)

χ = 2 − 2g − bEuler 
characteristic



Result II: the area law contribution is exactly determined by the 
boundary energy in the CFT with the same regularization

Result III: there is a universal logarithmic corrrection in the 
following two cases:

I. the boundary “cuts” the system into pieces and thus modifies 
the total Euler characteristic (example: cut disk into 2 pieces)

II. the boundary has sharp corners (e.g., A is a square within B)

2D conformal quantum critical points

S = FA + FB − FA∪B

FA ∼ f0(L/a)2 + fs(L/a) −
cχ

6
log(L/a)

χ = 2 − 2g − bEuler 
characteristic
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THE END



The quantum spin Hall effect
Why are some band structures more stable than others?
Graphene = semimetal + SO coupling (creates gap)
(First observation of the QHE in graphene was in 2005!)

Edge picture: consider scattering within a T-reversed pair,

where we have used the antiunitarity of T and the relations (K is conjugation)

The first equality follows from

then                    gives the second, and  T^2=-1 for spin-half particles in the last.

〈ψ|H ′|φ〉 = 〈Tφ|H ′|Tψ〉 = 〈ψ|H ′|T 2φ〉 = −〈ψ|H ′|φ〉

T †H ′T = H ′, T = UτK, T †
= T−1

= KU−1

τ

〈ψ|H ′|φ〉 = 〈H ′ψ|φ〉 = 〈Tφ|TH ′ψ〉 = 〈Tφ|H ′|Tψ〉

Tφ = ψ



Entanglement entropy and future directions

The irrational values of “effective c” found via entanglement entropy 
at random critical points are consistent with c-theorem ideas:

disorder is relevant at the clean critical point, and the RG flow is to 
the random critical point, with reduced ceff = (ln 2) c0.

Are there other cases where an effective c-theorem holds for 
quantum critical points?

We are currently studying a generalization of the problem:
higher-spin integrable models may flow under randomness to 
permutation-symmetric random critical points; is the c-theorem 
satisfied there as well?

Disorder

c = 1

c̃ =???

c̃ = ln 2

Spin

s=1/2

c =
3s

s + 1



Quantum information and black holes
Historical note: the original appearance of the entanglement entropy area law was to 
give a picture why black holes have “holographic” entropy (S ~ A, the area of the event 
horizon).
(Bombelli et al.; 1986 Srednicki 1993) 

Argument:
let subsystem A be the black hole; subsystem B be the rest of the universe.

Assume that the whole universe is in a pure state.  What entanglement entropy 
is found by an observer that cannot access the black hole?

Guess I: entanglement entropy is extensive in “spatial volume” (assuming that 
GR provides a unique definition of the latter).

But subsystem A is finite, subsystem B is infinite (or at least much larger).

Guess II: entanglement entropy should be determined by a property shared by A 
and B: the boundary (event horizon) -> holographic entropy.



The quantum spin Hall effect
The extra stability with an odd number of Kramers pairs 
at the edge is fundamentally a “Z2 topological index” of 
the band structure in the bulk.

However, with interactions two right-moving particles 
can interact with each other and scatter jointly into two-
left-moving particles: does this modify the QSHE?

A bosonization analysis gives the following conclusions:

1. There is a wide range of stability with interactions when the Z2 index predicts 
stability without interactions.
2. interactions can actually stabilize the edge, even when the Z2 index predicts an 
instability in the noninteracting case.


