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The mechanical resonant response of a solid depends on its shape. density. elastic moduli and dissipation. We describe 

here instrumentation and computational methods for acquiring and analyzing the resonant ultrasound spectrum of very 

small (0.001 cm’) samples as a function of temperature, and provide examples to demonstrate the power of the technique. 

The information acquired is in some cases comparable to that obtained from other more conventional ultrasonic 

measurement techniques, but one unique feature of resonant ultrasound spectroscopy (RUS) is that all moduli are 

determined simultaneously to very high accuracy. Thus in circumstances where high relative or absolute accuracy is 

required for very small crystalline or other anisotropic samples RUS can provide unique information. RUS is also sensitive 

to the fundamental symmetry of the object under test so that certain symmetry breaking effects are uniquely observable. 

and because transducers require neither couplant nor a flat surface, broken fragments of a material can be quickly screened 

for phase transitions and other temperature-dependent responses. 

1. Introduction 

Large single crystals are always highly prized, 
in part because of their appearance, but also 
because usually they are the result of consider- 
able effort on the part of the grower. Such effort 
is justified because the usual implementation of 
many measurement techniques, for various com- 
plex and often mundane reasons, requires sam- 
ples with dimensions in the centimeter range. 
Ultrasound measurements, traditionally of great 

importance because of their connection to 
thermodynamics, transport properties and mi- 
crostructural effects, are typically subject to this 
size constraint. When only small samples are 
available, it is possible to perform pulse-echo 
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ultrasound measurements at GHz frequencies [l] 
or to use the vibrating reed and related methods 
[2], but the cost to the scientist is either instru- 
ment complexity or loss of information. There 
are, of course, other nonacoustic techniques for 
obtaining sound velocity and attenuation data 
such as Brillouin scattering [3], inelastic neutron 
scattering [4], X-ray based methods [5] and 
others. Each of these nonacoustic techniques has 
advantages and disadvantages. Among the dis- 
advantages common to all of them is the lack of 
high precision. Only the acoustic techniques can 
achieve lo-’ or better reproducibility. Because 
the speed of sound may vary only a percent or 
less at a phase transition [6] or a few percent 
from 300 K to 4 K, this lack of precision can be a 
serious failing. On the other hand, neutron scat- 
tering can provide the entire dispersion curve 
from Brillouin-zone center to edge, but with 
worse than percent accuracy, Brillouin scattering 
can obtain data at frequencies in the tens of GHz 
range with 1% accuracy on very small samples 
but suffers at cryogenic temperatures or with 
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and relative accuracy from cryogenic to very high 
temperatures. The basic principle behind this 
simple, inexpensive bench-top measurement 

technique is that the mechanical resonances of a 
solid depend on its shape and moduli in a way 

sufficiently complex such that a measurement of 
the resonant frequencies of a carefully made 
sample can be used to determine the full elastic 

tensor. To illustrate this we show in table 1 the 
results of such a measurement on a Si,N, ball 
bearing. These data represent our current state- 
of-the-art for iaccuracy, primarily because this 
object. a nominal 5116 inch diameter sphere, is 
spherical to a few parts per million and is made 

from a carefully controlled ceramic with very 
isotropic properties. Thus only two moduli, the 
density and the diameter are required to fully 
characterize its resonances. As can be seen from 
the columns labelled ,f,, and f,, agreement be- 
tween experiment and computation is of order 
0.01% after a best fit to the moduli (in this case, 
we use the shear modulus p and Poisson’s ratio v 
as the independent parameters) is found. Density 
and diameter arc measured independently. For a 
larger 112 inch nominal-diameter sphere of the 
same material, we obtain 0.004% agreement, 
primarily because the larger object is less pertur- 
bed by air and transducer contact and because its 
temperature cannot change as quickly. 

2. Measurement techniques 

Current practices in the design of the hard- 
ware, data analysis and sample preparation sys- 
tems required to make and interpret RUS mea- 
surements have not been described in detail 
anywhere. Because of the novelty of the tech- 
nique, and because of its utility, it is important 
to understand the measurement system in order 

to appreciate the data produced by it. Because 
an example is often the best focus. a state-of-the- 

art apparatus for making low-temperature RUS 
measurements on rectangular parallelepiped 
(RP), spherical and cylindrical samples with 
smallest dimension of about 0.05 cm, from 20 K 

to 400 K, will be described schematically. Using 
data on SrTiO,, La,CuO, and Laz_,Sr,rCuO, 
single crystals, we will illustrate what can be 
learned with RUS including certain effects relat- 
ing to crystal symmetries not accessible by any 
other measurement method. 

2.1. Data analysis 

The key to the successful application of RUS 
is the ability to compute mechanical resonances 
from a body’s shape, density and moduli. For 
solids, such as a sphere or RP, having a shape 
sufficiently simple to enable description by a few 

Table I 
Resonant ultrasound measurement of a 0.63500 cm diameter Si,N, ceramic sphere with a density of 3.2325 g/cm‘. J;,, are measured 

frequencies, f, are fitted, II is the mode number. k is our designator (to be discussed below) for the symmetry of the mode and i i\ 

in essence the harmonic number of each symmetry type. Multiple entries indicate the mode degeneracy. The tit for 

p = 1.2374 x IO” dyne/cm’ and D = 0.2703 has a x2 (%) = 0.0124. This is sufficient to determine w to ahout 0.01% and u to 

about 0.05%~. There are no corrections so these values are absolute. 

12 fc (MHz) 

I 0.775706 0.775707 ~0.00013H 

6 0.819567 O.XlYYX3 -0.050778 

II I .075664 I .075399 0.024614 

I4 l.lY8616 I. 198505 0.00023’) 
21 I .217375 1.217850 -0.039042 

2x 1.440760 I .440750 0.000712 

29 1.527080 1.526474 0.039695 

34 I .55835X 1.558848 -0.031448 

43 1.5X0067 I.579871 0.012426 

f;,, (MHz) c/c error (k. i) 

(6, l),(l, l).(a. 1),(3.2).(7. 1) 

(5. I), (3.1). (5.2). (8. I). (2.1) 

(I. 2). (7,2), (6.2) 

(5.3). (2,2). (3.2). (8,2). (3.3). (X,3). (2.3) 

(1.3). (633). (7.3), (1.4). (6.4). (7.4). (4.3) 
(5.4) 

(5.5). (8.4). (3.4). (5. h), (2.3) 

(5.7). (5.X). (5.9). (3,5), (8. S), (2,s). (3,6), (8.6), (2.6) 

(6.5). (735). (736). (I. S), (4.4), (1.6). (6,6), (3. S), (4.6) 
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The matrix E has elements 

E h,h’,’ = a,, ’ I 
@,,P@~, dV . (14) 

If we had chosen @A to be an orthonormal set 
with respect to the density p (for example, nor- 
malized Legendre polynomials [ 13]), E would 
have been the unit matrix, simplifying sub- 

sequent manipulations. Our choice of @*, al- 
though extracting a moderate computational 
penalty, is more easily applied to complex shapes 
than an orthonormal set. 

The matrix I‘ has elements 

I- h,h’l’ (15) 

The volume integrals which appear here are 
quite tractable for many shapes if the choice (11) 
is made. 

The expression (12) for the Lagrangian is 

stationary if the displacements U, are solutions of 
the free-vibration problem. These solutions may 
be obtained by setting the derivatives of eq. (12) 
with respect to each of the R amplitudes uih 
equal to zero. This yields the following eigen- 
value equation : 

02Ea = ra. (16) 

The matrix E is symmetric and positive definite 
and r is symmetric, so a standard eigenvalue- 
eigenvector subroutine package (RSG in EIS- 

PACK-[17]) can be used to solve (16). 
For our choice of @A the matrix elements of E 

and f are all of the form 

f( p, q, I) = 1 xpyqzr dV , (17) 
C’ 

where p, q and r are nonnegative integers. This 
integral can be: evaluated analytically for a varie- 
ty of shapes [14]. For the RP with sides 2d,, 2d2, 

2d,. it is 

,,l’+l,;+l,;+’ 

f(p, q3 4 = rp*] + l)(r + 1) . (18) 

To solve the inverse problem, the derivatives of 
the eigenfrequencies f = wl2n (where w’ is an 
eigenvalue of eq. (16)) with respect to parame- 
ters of the sample are required. These can be 
obtained easily in the following way. First, dif- 
ferentiate eq. (16) with respect to one of the 
sample parameters p (an elastic constant, dimen- 
sion or angle specifying the orientation of the 

crystallographic axes with respect to the paral- 
lelepipedal axes) to obtain 

aw21ap Ea + 02E daldp + a~’ dEldp a 

= arlap a + r aalap . (19) 

Then multiply this from the left with aT and 
compare with the transpose of eq. (16) to get 

&/ap = (a’[ar/ap - W’ aElap]a) (20) 

Because we have already computed the eigen- 
vectors a and the volume integrals occurring in 
dZ’/dp and aE/ap are trivial, the computation of 

the derivatives represents only a minor increase 

in computational time. 
We can speed up the calculation immensely by 

exploiting the symmetries x+ -x, y+ -y, 

z-+ -z that occur if the crystal is of ortho- 
rhombic or higher symmetry and the crystallo- 
graphic axes are aligned with those of the sam- 
ple. Then by inspection of the PE in eq. (6) we 
see that if U, is characterized by a parity triplet 

(-5, F, v) where 

-6 = (-l)‘, p = (-l)“, V = (-1)” , 

the matrix r only connects this U, with uy and uZ 
having the following parities: 

Thus the matrix r degenerates into a block- 
diagonal matrix with eight blocks, each charac- 
terized by one parity triplet, say the parity of u,. 
We label this parity as follows: 



c 
1 

p, 
_- 

- 

- 

_.. 
I- 

. 

7 
- 

;. 
‘- 

1 
, 

‘2 
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F,,, = 2w,(L - ~J.L 3 (27) 

F 

The first derivatives f;,, are given by eq. (20); we 
drop the second-derivative term f,.(+. One may 
make four arguments to justify this. First, the 

second term in eq. (28) is a sum over the mea- 
sured frequencies; this sum will probably include 
about as many positive terms as negative ones, 
and consequently should be small. Secondly, 
dropping the second term will never affect the 
position of the minimum, only the route and 

speed of getting to it. Third, althoughf,,,c, can be 
expressed in terms of already computed eigen- 
vectors and eigenvalues, actually evaluating it 
requires considerably more computer time than 
the evaluation off, (.. Finally, to implement the 
minimization scheme one must obviously solve 
eq. (26) for X, which may involve finding the 
inverse of F,(+, often a difficult thing to do if F,,, 

is not positive definite (the first term in eq. (28) 
is positive-definite, but not the second). Follow- 
ing ref. [18], let 

R<? = WI( s, ~ g, ).L 7 (29) 

A crfi = YL,f,.~ > 

and the solution of eq. (26) is 

(30) 

x, = xo<t - A,; B, . (31) 

This equation is valid whenever eq. (24) is a 
good approximation, i.e. when x, is close to the 
minimum. If not, a best guess is to move in a 
direction opposite to the gradient (downhill), i.e. 

XC, = XOC~ - constant * BCr , (32) 

where the positive constant has dimensions x2/F. 

AU,, (no summation) has dimensions F/x’ and is 
a measure of the aath element of the F-surface 
curvature tensor. It therefore may be reasonably 
used to limit the distance moved in the ath 
direction in parameter space (this is important 
because there are many shallow local minima 
available to trap the solution. Such minima ap- 

pear if a mode is too weak to be detected and no 
allowance is made for a missing mode in the 
group of measured frequencies, or if large steps 
are taken in following the gradient ‘downhill’). 
Following Marquardt, introduce a dimensionless 
positive quantity f1 and replace eq. (31) with 

(33) 

without a sum in eq. (34). Equation (33) is 
identical to eq. (31) if 0 = 0 and is very much 
like (32) for large R. when G becomes nearly 
diagonal. By choosing a large 12 we can proceed 
as cautiously as we like along the M-dimensional 
surface F, only decreasing R to zero when in the 
neighborhood of the minimum. 

If by iterating eq. (33) a number of times 
convergence is achieved at a point x,,, in M- 
dimensional parameter space where the gra- 
dients BCp =O, LY = 1,. . ,M, then F may be 
expanded about that point: 

F(x) = Q,,,) + ~~,An,&m,,) 6x, + . . . 

where 6x = x - x,,,~, . 

(35) 

Because the curvature of F in different direc- 
tions varies over as much as two orders of mag- 
nitude at the minimum. the accuracy for de- 
termining x,,, is very different for different pa- 
rameters. Recognizing that 2A is just the inverse 
of the covariance matrix for this problem, 
diagonalizing it (or equivalently, G) yields M 

eigenvectors y’” and eigenvalues at. Specifically. 

GU,Yf; = 2UiYf: (36) 

In terms of these variances and eigenvectors eq. 

(35) b ecomes 

F(x) = W,,,,, ) + (6x, yP))‘/2u2 . (37) 

Here (6x, y”) is the inner product of two vec- 
tors, and because Y@ is a unit vector it is just the 
projection of 6x in the yP direction. So eq. (37) 
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large uncertainty ih attuchcd to the correspond- 

ing linear conil~ination of the .I;‘\ gi\.cii b\. 

(Tsx. y” ). Thus probnblc crrot-s cannot be at- 

tachccl easily to individual elastic constants (and 

or dimensions), but only to thcsu linear combina 

tions of them. We estimate the error t’or ;I ~;IIF 

titular parameter .v, 1~~ examining scvcral 01 

these linear combinations. In this way the sharp 

ncss of the minimum for ;I particular paramctct 
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may be dctcrmincd. The error estimate is \‘cr\ 

sensitive to sample gcotnetrv error\ including 
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Such errors may make the absolute minimum t’or 

F shallow and introduce other local minima that 

may trap the solution in the wrong place. The 
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;i 5 (*iii parallelism error in 2 mm it is esacntiall~ 
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obtained. Typically with a ‘good’ fit and where 
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the RMS error between fitted and measured 

frequencies is less than 0. I%, the solution docs 

not get trapped in ;I local minimum. and a 
change in this error of 2% is larger than all 

reproducibility and other error sources occurring 

in the measurement. Thus an M-dimensional 
ellipsoid in parameter space surrounding the 
minimum in F with a surface corresponding to a 
7% increase in x’ provides a realistic error esti- 

tnate for determination of parameters. Using this 

criterion. the compressional moduli (c,,. i = I. 3) 
arc determined to better than I%, shear moduli 

((,,, . i = 4, 6) to 0.02% and off-diagonal moduli 

10 hcttct- that1 3’, l‘his way of dctermintn; 

ct-t-ors can be tested dircctlv by making the di 
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,q, in cq. (3)) or (.3) the trcsonant frequcnctes arc 

incorrcctlv measured. 7‘0 achieved an xcitt~alc lit 

the face\ of ;L tnillimctct--\i~c~i RP sample nit141 
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accomplished using ground stocl 4hinis and ;I 
glass plate as shown in liz. I l‘hc shims. \uri;ic~~~ c 
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distance bctwccn 4;iniple ~acc4 I0 bc polished. 

and with edgc4 squ;it-cd up in an ordinar\ milling 
machine. ;trc arranged as \hoM n on ;I flat gl;144 

plate coated with moltcti L{;I~ 1 IO] and held do\vri 

with :I large niagne(. The ?i-ra> oricnteti \:inipl~ 

i\ trapped bv the shims and polished on I5 pm 
and then 3 ini optical lapping paper [N] using 

an appropriate lubricant such as kerosene. That 

the shims can force ;I sample fact to hc tither 

parallel or pcrpcndiculai- to the glass depending 
on how prcssurc is applied to the satnplc as the 

N:IY cools is crucial. In addition. as the sample 
ncarlr completion. the shims hupport the sample 
edges. ensuring that sharp edges and corncr4 arc 
produced, especially for brittle materials such II\ 
La,c’uO ,_ This appears to be important both t’ot- 
accuracy and to minitnize the nutnber of missed 

modes. There is no definite way that we know of 

for the quantifying rcquisitt: corner and cdgc 

sharpness. 
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Sample (to be polished) 

/ 
s”*c.-gro”nd cell 

, / 

I / 

Sample 

Fig. I. Shown is the arrangement of ground steel shims on a 

glass plate used for obtaining an accurate rectangular paral- 

lelipiped from an as-grown oriented single crystal. 

2.3. Hardware 

Even with a well-prepared sample, certain 

modes, especially those having k = 5 (the only 
mode type where the volume oscillates) may 

have nodes near the corners of the sample. 
Computation of the mode shape is a simple 
addition to the codes used to find resonant fre- 
quencies, and the result for two mode types is 
shown in fig. 2. Because the task is to excite 
resonances, it is important to drive the sample at 
a low-symmetry location to excite as many 
modes as possible. The lowest symmetry point 
on a RP sample is the corner, thus this is the 
most desirable point to drive and detect, an 
important principle discovered by Demarest [ 111 

Fig. 2. Eigenvectors (local instantaneous peak displace- 

ments) for k = 4, a pure shear mode and k = 5, the only 

mode type for which the volume oscillates are displayed. The 

k = 5 mode illustrates how a node can occur near a corner. 

making it very difficult to observe that mode. 

and Anderson et al. [12], and derived, group- 
theoretically, by Mochizuki [21]. Moreover, the 
corners have a low mechanical impedance so that 
touching them with a transducer has minimal 
(less than a lO_” fractional frequency shift) effect 
on the free-surface boundary conditions if the 
contact force is low (lo3 dynes or less). Other 

excitation schemes have also been used, such as 
electromagnetic [22] and polyvinylidene fluoride 
strips [23], with mixed sucess, in the sense that 



Surprisingly. the lowest nicde5. cvcn tot- ;III 

RI sample. xc usuall~~ put-c \hcat- mode\. l‘hu\ 

c\‘ctl it‘ moduli 2nd 4h:tpc conspire to lot-CC. ,i 

node to hc near ;I cortict-. thereby making 11 \o 

weak that it mu\’ hc missed. the first se\etxl 

modes will generally dctcrminc the shear mociuli 

to I “C or so. providing ;I good guess for Ihctn iti 

the inversion calculation. The inversion ccdc 

now ha> somewhat less work to do. making tt 

harder to fall into ;I false minimum. Mot-c im- 

portant. though. is that anything that hc1ps C~C 

WI-C ;I good initial guess for the mociuli should he 

used. including publishctl values. hecauxc M ith ;I 

good starting point and the LI~C 01 onI\ the tit-\t 

live or ten rcsonancc~. the first pa\s of the cotlc 

ma\ help identify place4 where ;I mode IS iiit4\- 

ing. Then a more careful scan ot- ;I remount 01 

the sample may t-weal the mode. l‘hct-c ;~I.c 

other ways of finding missing mode4 using simple 

modifications to the apparatus describecl I~elo\~ 

1241. ot- by sitnplq inserting. measuring xitl t-c- 

moving the sample several tima. WC cannot 

ovcrstress the importance of tinding nearI\ ( 05 , 

or hctter) all modes hefore relying on the analy 

his of the data. 

.fhc hat-dwar-c atid electronics i14eil to ol3t;1111 

accurate I-csoti;~~icc data include ;I ct-vo4t;lt 01 

t urnacc. transducers. ;I preamplifier, ~anipliliet- 

and mixer/filter or WIW equivalent. The clew- 

tronic components and transducers usctl in out- 

and Anderson’s systctns 13.51 are now ~o111111et~-- 

cially available from Quatro Corp. [%I. We will 

hcgin the hardware discussion with the transduc- 

crs and work our way back to the K-AI‘ con- 

patihlc computer used as a controller. Although 

other approaches will work. the one described 

hcrc has been demonstrated to p~duce sufti- 

ciently high relative and absolute accuraq that 

overall errors are determined hy temperature 

diifts and intrinsic sample preparation problems. 

To nicasitrc rcsonancc’; of the sumplc ii I\ 

important to eliminate the resonant response 01 

the apparatus. or cstra modes mav be ohscrvecl. 

Krause most satnplcs in the six range of I tntll 
have t-csonanccs ahow about 0.4 MHz. and 30 ot- 

i11ot-c t-c4011;1t1cL’\ l~ClO\4 .: ILlll;/. Lhc tt~;ltl\~illLc’,‘. 

llxd tcb c\citc and dctcct tiitl\t IW cithct J;ttitp~~~i 

ot nonrc4on;itit in 11114 It-cquctic\ range I )~ltllp 

ltlg clck~ not norI\ \\~,ll OL’C~I. \ticIi ;I Iarsc l;itlp 0j 

trcclucticic4 01 at 311 K. 111114 the t10t1l~cv~t1;111! 

appt-o;lcti I\ hc4t. I I~~v,c~ct ~111 lrandttc~~t nl,i 

Icrictl\ ha\c \ouncI \‘c‘loc3ttc5 ix)mp:tt-at31c~ 10 tlti 

~ample4 tiicdsurcd ()t1c c;lllllc,t get ;ltc~tltld t111\ 

I>! tl4ilig clec3ro4t;ltlc~. tiidgll~~tlc 01 optic,at dct~,~ 

IlOll 4ChClllC’4. I’hC <~[?tlC’;ll rlllC\ LlIC tllllCt1 iO(! 

11014\. blagnctic \chcntc%\. ~~cc;ibion;tll\ i~u_xl I’\ 

c&t-\ [“I. \uffcr lrc)tii two 4criou\ pt-ohlctii\ 

‘l’hc lir\t is that the ~nplc iiiust tx cithct ICI- 

totiiagn~tic or conducting 01. cclatecl with (I ICI 

rc~magnetic ot- thick cx)nducttng layer. E\cti I ptit 
01 let-romagnctic /;t\cr vi111 bc ;I ()._)(I pcrturb;l 

Iicjii OII \niall ~tiiplc5. illit wet-\c still. the 1c.l 

t’c~tna~ti~t dot4 not Ii;ivc. 4 \\tiimetric c‘la\ttc tctt- 

\ot Second. the cc)11 IIWI to drive 01 Ilct~~~~t 

ititct-act\ niechanic2ll\ uith rhc 4;iniplc~ .i ~,i .: 
tnagtiettc licld. 7‘17~4 the iisitall~ tiumc~-ot~~ ~~011 

t~c~4otia1icc4 ztiift arid clegrxlc the ~tiipl~~ tticde~ 

:I\ well ;I\ pcrhap tntt-ociucing sonic nc~ t )ilC\ 

I‘hi\ is known ;I> ‘coil cti\easc,’ 111 NMK I~C;IWIC~ 

mcnts 1771. Llectrost;tttc \\4tcnis haxe \ttiiil;tt 

prohlctns. The 4olutton. appl~cal~lc to dit-c,ct COII 

tact (and clectro\tattc :rIiti magnetic clr~\~c \I ,- 

tcnis iis i4 0In ious attcr :I tiiotiictit‘\ t-eflcctioti) I\ 

not 10 make b’cr\ small. and thereforc bc‘r\ \ccah 

transducers hut to construct the transducer n~ost- 

I!, out of Gnglc-crylal diamond. Our \ytctti [ 251 

use\ conimcrcial 30 Mt1/ cc~nipressional mode 

I .iNhO disc\ I .I tiitii in dianietcr and approxi- 

mateI\ 0.1 mm thick [2X]. Such disc4 lii~\c (I 

thicknc~~ tnodc of 30 MHz but hcnding tnodc\ 

near IS0 kHz. llowc\~t-. using our cylinder LXKIC 

wc kno\+ that a diamond cvlindcr I..5 mm in 

diametct- ;rticl I .O mm long has ;I lowest mode ot 

4.47 MH7. ‘Thus it’ wc bond the diamond to the 

transducer. the asscnihlv has 2 lowest mode tic21 

1 MH-/. The diamond -also acts a\ a11 inerttal 

load. 40 that the response ot’ the I.iNh02 ~II 

direct contact with the sample is cnhancecl bv the 

diamond hchintl it. We al\o use a Ag-coated 

polyimidc film 75 pii thick with I pm of cvapr)- 

t-ated Ag as the ground plane. and a strip of this 

material I .5 tnm wide ;I\ ;I lou inductance. lob 

mechanical Q electrical contact bv inserting the 
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strip between diamond and LiNbO,. This strip 
also helps damp the 4 MHz and above assembly 
resonances. All joints are made with a noncon- 
ducting epoxy [29] because at these frequencies 
no direct electrical contact with the transducer is 
required, capacitive coupling is sufficient. The 

transducer assembly is shown in fig. 3. 
In order to minimize transducer loading effects 

on the sample, we mount the transducers in a 

Mg machined ‘tone arm’ assembly, shown in fig. 
4 schematically. This assembly provides of order 
1 g of unbalanced mass above the transducer to 

provide a low contact force. The tone arm is 
suspended on 1 mm wide strips of Ag-coated 
polyimide film. the same used in the transducer. 
The width of the film provides a low-inductance 
electrical ground with excellent low-temperature 

Lithium Niobate Disc 
Silvered Kapton Film 

Diamond 

Cylinder -) 
I Kapton 

Electrical 

+ ~ 1.5 mm Id- Lead 

Fig. 3. Shown is ;i schematic of the diamondipolyimidc! 

LiNbO, composite transducer used for all the measurements. 

A / POLYIMIDE TORSION 
H 9 NGE AND GROUND 
LEAD 

Mg TONE ARM 

;;I SiMFLE TiiWSDUCER 
f ASSEMBLY 

TRANSDUCER HOUSINGS 

Fig. 3. The sketch here roughly illustrates how mechanical 

contact is made to the sample while preserving electrical 

shielding and maintaining a low contact force. This arrange- 

mcnt works well from 2 K. the lowest temperature WC are set 

up to reach, up to the temperature at which the epoxy bonds 

in the transducers fail. 

properties. The combination of low contact force 

and small, nonresonant transducers produces sig- 
nals that are much weaker than those used by 
Ohno, Sumino and colleagues [15,30]. Their 
measurements were always made using a force 
balance that enabled resonant frequencies to be 
measured at successively lower contact forces. 
The frequencies shifted substantially (O.l%- 
0.5%) as force decreased, and the extrapolated 

asymptote was used as the zero-force frequency. 
With our system, even at comparable contact 
force, we observe less than 20ppm frequency 
shifts for changes in loading from 2 g to 0.5 g. 

The shifts observed in refs. [15] and [30] appear 
to be primarily associated with high drive levels, 
and are absent for us. This is important because 
it greatly reduces both the amount of data re- 
quired and the possibility of shifting the sample 
accidentally during a run, a probrem that can 
cause artificial discontinuities in both frequencies 

and Q. Another effect appearing in Anderson’s 
system is associated with alumina buffer rods 
[31]. These rods were necessary to isolate the 
transducers from temperatures exceeding an as- 
tonishing 2000 K, the highest temperatures ever 
used in a conventional ultrasound measurement 
system. Because the rods were long (i.e. several 
orders of magnitude longer than the largest sam- 
ple dimension) they operated in the reverbera- 
tion limit. That is, at the frequencies of interest 
for sample resonances, the rods themselves had 
such a higher mode density that the modes over- 
lap strongly. As frequency is swept, the response 
of the buffer rods is convoluted with the sample 
response producing essentially random am- 
plitude and phase mechanical motion, but with 
resonances still clearly detectable. The result is 
the observation of non-Lorentzian line shapes 
for the sample resonances, making it difficult to 
determine accurately either the center frequency 
or the Q. However, considering the tempera- 
tures reached, and with no obvious cure, Ander- 
son was forced to use such an approach. For 
most other system designs, buffer rods should be 
avoided. A similar effect in our system is associ- 
ated with the gas surrounding the sample which 
provides an undesirable ultrasound path between 
transducers in the reverberation limit. A disk of 



ordinary filter paper with a small hole punched 

in the center. and split in half was constructal 

and inserted between transducer assemblies and 

surrounding the sample. This completely climi- 

natcs the gas path for ultrasounci and thuh 

minimizes gas resonances. 

To access temperatures from 70 K to 100 K. 

0u1- measurement cell is inserted into ;I v;icuu111- 

insulated cylinder. One end of the cylintlcr (01. 

How cryostat) is cqxn. the other end is conncctcd 

x,ia \xuuIn insulntcd tubing (:I conventional 

liquid-He transfer line) to the gas spxc abow :I 

liquid-He storage dcwx. Insidc the debar. 

below the liquid level is ;I 1 klZ. 2 W carbon 

resistor. This resistor is heated using an ordinary 

power-line-type variable autotransformer. with 

applied voltages up to about 30 VAC‘. The cold 

boil-off gas passes through the transfer lint into 

the insulated cylinder and around the mcasurc- 

ment cell. A second SO fZ heater, constructed 01 

IO II/m cotton-insulated resistance wire ( the 
wire is simply wadded up into ;I rough ball) i> 

inserted in the gas flow path at the flow cryostat 

transfer tube joint and is controlled using an! 

commercial cryogenic temperature controller. 

Temperature sensing is via a silicon diode thcr- 

mometcr mounted inside the KUS cell within a 

few millimeters of the sample. This arrangement 

13 shown \chematicallv in tig. 5. and is cap;~blc 01 

70 niti temperature c‘ontr-ol 

I‘hc beak Ggnal4 protlucc~l t)!, our lran4duccr\ 

and lob contact I()I-cc require the t>c\t pc>\hil3lc 

\ignal;noisc ratio (4 n) tc)r the rccci\cr ctlcc 

tronia to cn4urc clctection ot as 11i;uiv ~riodc\ :I\ 

1x)44ihlc. ThC elcct1-0111cs dc\igIi i4 L,cIiterLsc! 

;iI-ound the clccti-ical equi\~dcnt circuit toI 0111 

II-;insducer a44cnil~l\ 01~1 the trequencie4 of 111 

Ic’rc4t. exxntiallb ;I pure I(\ pF capacitor Sign;ti\ 
procluccd arc in the tcIl5 ot microvolt r-:inlc dnd 

up 7‘0 clctect \uch siynal4. (MO basic appro;ic’hc~\ 

C;III he taken. .I‘hc one \\c rc.jcct i\ to MC ,i 

I7roadtxmcl cscitation pulp and I~oilI-icr trail\ 

l’orm the IrcaIlt. ‘l‘hi\ i\ the Ilest approach ii Iargi 

\ign:il\ and overlappin g niodc4 arc pfc\cnt I.;?/ 

Howe\:er. to cnsurc that MC do not mi\\ C‘\CII the> 

\\c;1l\c41 modcx. AlId tlccau>c the lllO\I IlUl7lL 

wlllplc\ hiI\ c’ ;I mechanical Q III c-\c‘c\\ 01 i0I) 

iilcdC o\crlap is riot (I prol~leni hut \ 11 I\ I hi, 
hI-oxit~alld ~lppl-‘~;lcll Illll\t t1;i\c >\I1 cicctl~~ltli 

l~;iIidwidth exceeding that 01 the gI-oup ot IIc’4(’ 

11;111cc~ to Ix_* nic;i\urcd. ;ind must ;ilw~ \ipi:ii 

;r\er:rgc ;I mc;isiIrcmcIlt ha\ 1I1g ;I lou cirit\ c‘\clc. 

‘l‘hat i\. to avcragc the \~gn:Il (and noi4c ovcI- tllc 

rc*cci\cr l~antlwidth) tor \ome amc~utlt of Inc.1 

4ui-cnient time. iiii~n\ excitation pulx5 mu\1 I)i 

gCncratcd. tlIgItIzecl litiic \erics takeiI. d;11~1 
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transferred between pulses etc. Thus most of real 
time is spent with no signal present. Moreover, 
because measurements are made only in regions 
of frequency space where the sample exhibits 
mostly well-separated very sharp modes, any 
broadband system is acquiring much data that 
contains no information. Finally, for sharp, Lor- 
entzian, well-separated modes, phase informa- 
tion is unnecessary. We have, therefore, chosen 
to use a swept sine approach based on a 
heterodyne receiver. 

A heterodyne/swept-sine receiver (HSSR) can 
have an arbitrarily narrow bandwidth, has a duty 
cycle of unity, need only measure where reso- 
nances exist, and can signal average for arbitrari- 

ly long times a signal from which most of the 
noise is already eliminated using digital detection 
of the final, high-amplitude information-contain- 
ing output of the analog section of the receiver. 
As with any receiver, the unavoidable noise is 

controlled primarily by the preamplification 
stage. The best approach for preamplification is 
to locate a JFET preamp very close to the re- 
ceive transducer. In this way, the shunt effect of 
the capacitance (easily 100 pF) of cables connect- 
ing the 10pF transducer to the preamp is elimi- 

nated. However, this would require a warm pre- 
amp to be located inside the flow cryostat, a 

complication we chose to forego. Instead, we use 
an accurately unity gain preamp at the end of a 
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Fig. 6. We show here the schematic diagram of the low-noise unity-gain preamplifier used to bootstrap the cable capacitance of 

the transducer connection. The construction of this device requires very careful layout to prevent instabilities. 



trt~isial cable connecting l”-camp to tt-atisducct 

13! cc)ntiectitig the prcanip output lo the ititict 

shield of the tria\. WC clitninatc cable c>ll>iicl- 

Idttcc effects (this is known iI\ ;I t>oot\tt-~l~~ 01 

guard). ‘l-his is onlv important hecausc the pw 

amp 14 voltage sctisitive. For ;I current sctisiti\c 

prcatiip 01. ati op-arnp type prcanip, cable di~~rtt 

capacitance has no effect on overall a/ II. Hut IOI- 

ail\ type ot’ prcatiip used with \o iii~icli cabtc 

capncttaticc. much care tnusl Ix taken to elimi- 

tlatc high-frequency ph;lsc shifts that could C;IIISC 

cwillation. This is whc MY have LIXCI low-ittcluct- 

:IIICC lexls on tlic transducers and al40 wtiv \IC 

liiicl it easier to design ;I good .I2-F1’ front end. 

‘l‘he .lFET unity-gain prcaiiip show 11 sctiematic~il- 

I! in fig. 0. rnodificd l’rotn one dc\critxd III 

I lorowitz and frill (.3.;]. i4 clesip~ccl to ha\<. ,I 

lwnci\~~idth of 30 Ml I/.. ensuring no ~~nw~~ntc~tl 

ph:~sc \hit’t\ below 4 Mk1/. and ha\ a11 input tloiw 

li~ut-c of ;I few nC’/l1/ ‘. cotitrolled primat-il! t)\ 

the d~ial .IFH‘. lkc~iusc the It-i;ix cffecti\el\ 

~x~nnccts the output tiirectl! 10 tlic input. the 
rlcsign ;ind Iavout of tlic circuitn I\ crucial. ‘l‘hc 

inhc~rciit re~twtisc of ;I IHSSK is 4uch that it 14 iicll 

._ 
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Fig. 8. The mixer/filter based on the widely used Motorola 1496 mixer IC and the National Semiconductor AF100 state-variable 

active filter is shown schematically. The layout of this circuit is extremely important. 

proportional to the resonance signal at f. We use quire almost exactly 320 cycles of the most im- 
an IF frequency of 1 kHz and a filter bandwidth portant interference source, the electric field as- 
of 100 Hz. This yields a noise bandwidth 100 Hz sociated with the VGA monitor of the computer. 
wide at the filter output, but also limits the The absolute value of the 320 readings is avcr- 
receiver response time to of order 10 ms. This is aged with software to generate the resonance 
not a real limitation on the data acquisition rate amplitude at the frequency step chosen. The 
because each sample resonance is stepped effect of this is (1) to produce a constant back- 
through using steps much narrower than the ground offset arising from VGA interference, 
resonance width. Thus the receiver need only and (2) to signal average (equivalent to another 
respond to incremental signal amplitude changes 100 Hz bandpass filter) the IF signal over 10 
at sample resonance (i.e. if II steps are taken cycles with no analog time constants to generate 
through one resonance then the receiver re- glitches if the measurement is started with un- 
sponse time required is reduced by a factor of n). controlled phase of the IF signal (which it is). 

At this point the resonance information wan- 
ted appears at a fixed IF frequency of 1 kHz 
combined with a 100 Hz wide slice of noise. To 
get the amplitude of the IF signal into a PC-AT 
type computer requires that it be ‘detected’. The 
best approach is to use an analog to digital 
converter (ADC) to digitize the filter output 
such as an Analogic LSDAS-16, a 16-bit, 16 
Channel, 50 kHz ADC [37]. By running the con- 
verter at 32 kHz and taking 320 readings, we 
acquire 10 cycles of the IF signal. We also ac- 

A complete sweep through each individual 
mode is made using the above system and a dual 
digital synthesizer card to generate the LO and 
RF signals. The card we use was designed by us, 
is capable of 32 bit frequency and phase control 
and 15 bit amplitude control of two separate 
outputs, and is commercially available (261. The 
card fits in a standard PC-AT slot, is controllable 

by Microsoft QuickBAsIc or other languages and 
has a maximum output of 1 VAC (sufficient to 
drive the transducers directly) up to about 
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kilohertz 

l‘he rcsonancc data xquircd i4 procc~d 10 

huhtract background and then. using all the data 

acquired. ;I fir41 inomcnt of the usualI\ I.ore~it- 

Lian I-CSOI~~IICC‘~ is computed. In this wa> , further 

noise reduction occurs so lhal tic can determine 

rcliablv the center frequenc\~ ot ;I resonance 10 

ahout 3’; or less of the linewidth. A complerc 

cwperimentul run WOLIICI consist of ( I ) ii search 

for- all modes at rooitt tcmpcraturc. (7) :iccfui\i- 

tion of ;I data file produced Iv a iiilrrob s~~cep 

through each rcsonancc f’ouncl. (3) ;I croon- 

tcntpcratui-e tit to the moduli (and iteration ot 

( I ) ant1 (7) if the fit is inadcquatc or predict5 

missing modes. and (3) ;I repeat of‘ (2) for each 

tcmpcrature desired using sufticiently small Icn- 

pci-ature steps so ;IS not to lose track ot mode 

identitications. 

3. Typical results 

klavlitg tlescrihcd the principles. procedures 

anti hardware for making RlJS measurcmcnts 

and analyzing the data. WC present hcrc \omc 

cxamplcs of the application of RLJS to the stud\. 

ot 41ructur;iI ptia4c iran4itions (St’.1 ). ‘I‘lic c\;~ili 

pies reviewed here arc the 4oft-mode-dri\ cii 

SIT5 in the pcrovskite \ytem LA .C’uO ,_ \vhich 

includes \c’\,cr;ll high-temperature s~~pc~xx~~lcluc 

tars. and in SrI’iO,. 

Sr’l‘iO: i\ ;I pcrov\kite that undcrgoc\ ;I SP’I 

loom cubic (the tiigli-tcmpct-;ltLlrc or ‘x! nlmct~-IL‘ 

phase) 10 tetr-agonal (the I(,w-tcniper~lturc 01 

‘un\vnimctric‘ phsc) crc.\1;ll \vmmetr! at 105 K 

‘I’hi\ material ix par1Icui;lrl!, ihteresting I~CC~LIS~ 

i14 SPI‘ is ;I canonical cxamplc of ;I \of’t-motlc 

1351 phase transitiou ;~ntl has been well \tudieC 

hc~th thcorcticdl\ [i9] and csperimentall~ using 

conventional ultrasonic techniques [41.-&l ,471. 

Furthermore. the pcrovskitc structure ;III~ utl 

tier-lying titanium-oxygen cwtahccira in SrT‘iO 

:II-c \‘cr! similur to the structure of the higli- 

temperature 4upcrconductor\ La .(‘~i( ) dncl 

1.2, ~SrU(‘uO, 10 Ix2 discussed helo\v. On 21 more 

practical Icwl. large high-qualit\ single c‘rv\tal\ 

:irc r-cactiI\, available cc~rtirt~~r~iall~~, ;111;l II< 1 

macroxq%c fields develop at the SW to compli- 

cats data ;inal\;sis. WC ohtaincd ;I large Gnglc 

ci-ystiil 143] and prcparcd \cveral KP wniplc~ 

( I .9 ittnt )i I .5 mm x I .O mm) ii4 was dcscrihccl 

~lhove. 

The sxnplc geoinctr\ w;i\ imxrate 10 xt3ouI 

2 f_mi and the intrinsic qualit> was high ~1 that 
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we were able to measure and fit the first 33 
resonant frequencies at room temperature with 
an rms error of 0.075 percent. The values of the 
elastic moduli determined by the fit, as well as 
several sets of values from measurements by 
others, are shown in table 2. The agreement is 
excellent. 

Our real interest in this material is not so 
much a test of RUS but rather a study of the 
details of the temperature dependence of the 
elastic moduli through the SPT. Because of the 
unique capability of RUS to determine all mod- 
uli simultaneously, precise comparisons between 
moduli can be made and compared to Ginsburg- 
Landau (G-L) type predictions. The SPT in 

SrTiO, occurs as a result of the softening of a 
particular zone edge lattice vibration, the tilting 
of the titanium-oxygen octahedra around the 

(10 0), (0 10) or (0 0 1) axes. As the frequency 

of this phonon decreases to zero, these octahed- 
ra develop a static displacement, reducing the 
crystal’s symmetry to tetragonal and doubling 
the size of the unit cell. Because of the three-fold 
degeneracy of this octahedral tilt (rotation about 
X, y or z) the material also twins as it goes 

through the SPT, making RUS measurements 
difficult in the low-temperature phase. 

Theoretically, this transition is well under- 
stood. The soft-mode description coupled with a 
G-L free energy enables accurate quantitative 
predictions to be made for the elastic response of 
the material through the transition. Rather than 
work with the complete expression for the free 
energy including all possible strains and the full 
three-component order parameter, discussed in 

detail elsewhere [39], we will focus here on a 
qualitative understanding by considering a 

Table 2 

Room temperature elastic moduli (all values are in units of 

10” dyne/cm*) of SrTiO, determined by RUS as well as by 

conventional ultrasonic techniques. The percentages after our 

data are the error estimates for the individual moduli, de- 

termined as discussed above. 

c-11 c1z c41 Source 

3.17 1 .O2 1.23 Ref. [40] 
3.31 1 .O5 1.26 Ref. [41] 
3.15 (0.2%) 1.02 (0.7%) 1.22 (0.01%) This work 

single-strain and one-component order parame- 
ter. This is more than casually justified because if 
one knows which way the octahedra tilt, then use 
of a single-component order parameter causes no 
loss of generality. Because in an unstrained sin- 
gle crystal the order parameter does develop in a 
single direction, one certainly knows its direction 
after the fact. It is only important that one is 
careful with the group theory. That is, the full 

symmetry and number of required components 
of the order parameter are use to determine 
what terms must be included in a single-order- 

parameter description. Thus an accurate single- 
component-order-parameter free energy can be 
written 

(39) 

where F is the strain, 9 the order parameter and 
(Y, p, y and c~, temperature-independent con- 

stants. The first term in eq. (39) represents the 
usual elastic energy. the second and third an 
expansion in the order parameter. and the last 
term the strain-order parameter coupling. Be- 
cause the order parameter in this transition is a 
tilt in a mirror plane, only even powers appear 
(positive or negative tilts are equivalent energeti- 
cally). Given such a free energy, the change in 
elastic moduli can be calculated by minimizing 
eq. (39) with respect to strain (441. Such a 
minimization gives 

c = c,, 3 T>T,. (40) 

c=c,,-y’l2& TCT,. (41) 

Thus, a Ginsburg-Landau analysis of this phase 
transition predicts a step decrease in elastic mod- 
uli at the transition and, us?ng the full crystal 
symmetry, predicts the relative size of the step 
for each individual modulus. Our data for the 
elastic moduli of SrTiO, as a function of tem- 
perature are shown in fig. 10. Each modulus 
increases with decreasing temperature from ther- 
mal contraction and then exhibits a sharp (but 
not step-like) decrease in the region near the 
transition, in agreement with the above analysis 
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~1s well ;IS with the experimental work of otherx. 

IJnfortunateIy. twinning of the crystal at the SP’I 
prcvcnta KUS from accessing the moduli in the 

unsymmetric phase so that some quantitative 

predictions of the Ginsburg-Landau theory can- 

not be tested bv u\. Thi\ has. however. been 

done bv other groups using pulse-echo mcasurc- 

ments and the results arc in accord with theor! 
131 1. Note that an\; ultr:tsound messurementx in 

;I l\vinned s:lmple average over some set of mod- 
uli. and that to ohtnin useful information. 4onic 
detailed knowledge of the twinning pattern and ;I 
model for hacking out moduli are required. KIIS 

is 40 xensitivc to macroscopic twinning that us- 

able data of :rny sort often cannot be obtained in 

2 twinned sample because of substantial degra- 

dation of the resonance signals. This is typically 

not the case for pulse-echo. nor for RUS on 

microtwinned or polycrystal materials. 

The departure from true step-like behavior 
can he attributed to both thermal Huctuations 

and to imperfections or defects in the crystal 

[AS]. In order to verify this fact and to demon- 

\trate the fundamental difference between this 

r-ounding and the effects observed in La, , 

Sr< C‘uO,. discusxxi belo\+ . we viicLlum-11IiIi~~il~~i 

2 KP of SrTiO i to crc‘:itc oxygen vxxncIc4 in an 
attempt to braden the transition. While ;I sharp 

clccrcase Ircmaina after annealing, the decrease i\ 

distinctly broader in the :mneAed s~iniple. III 
agrecmcnt with previous work [42]. Having den- 

onstratcd that there arc no surprises 111 ;I RilS 

study of SrTiO I1 M’C clcscribc similar nIc’:isurc- 

ments on a mot-c difficult svstc‘m with roults th:it 

prove to be not \o ~iccommodatin_. 

Unlike SrTiO :. l.a,c’uO, and also its high- 
temperature superconducting relative IA. 

SrIC‘~~O, arc not readilv available as untwinncd. 

morphologicallv pcrfcct Gngle crystals. ‘T‘hc onI\ 

4uch xnmples extant ;trc in the I mm \iye rrangc 
xicl require verv considerable effort to product. 

Thus convcntio&ll ultrasound techniques mu\1 
bc applied to either large. poor-quality twinned 

\:tmples or not at all. In this system. the tetra- 

gonal to orthorhombic (TO) SPT occurs at 171 li 

for .I - 0.14 and about 530 I( for .\- = 0.0 [-NJ]. In 
table 3 arc the elastic moduli for an untwinnecl. 

orthorhomhic crvstal of I.a,C’uO, ( I .775 mm 
I.536 mm X I. lOX mm. 7.076 g/cc) and also 
for ii tctragonal crystal of La, ,$,,SI-,, , ,C‘uO , 
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Table 3 

The full elastic moduli of La, ,Sr,, II CuO, and LaZCuO, in units of IO” dyne/cm’ determined using RUS. The first entry for 

La, Xh Sr,, ,,CuO, is for the usual tetragonal basis. The second entry is simply the first one rotated by 45” such that a direct 

comparison to the orthorhombic stoichiometric compound can be made. The errors are about I .30/c for c,, , i = I. 3. 0.05% for c,, . 
i = 4. 6. and 3.1% for the off-diagonal moduli for La,CuO,. The corresponding error estimates for La, nhSr,, ,,CuO, are 0.25%. 

0.01 o/o and I .O% respectively. 

Cl1 (‘21 C37 c21 (‘I, (‘12 (‘41 CT, (‘66 

La, &, ,,CuO, 2.666 _ 2.571 _ 0.992 0.649 0.677 0.587 
La, xoSrI, ,,CuO, 2.245 _ 2.571 _ 0.992 I.071 0.677 I .oo’) 
La2Cu0, 1.747 1.730 2.662 0.091 0.928 O.YOO 0.653 0.66Y O.YY2 

(2.470 mm X 2.267 mm X 2.192 mm, 6.946 g/cc) 
determined using RUS. The LazCuO, crystal 
was grown by Canfield, Fisk and Kodali from a 
flux [47]. The Sr doped crystal was produced by 
Tanaka and Kojima using a travelling solvent/ 
floating zone system [48]. We note that the axes 
of the La,CuO, sample were not aligned with 
the crystallographic axes. Thus the fitting proce- 
dure had to determine not only the moduli and 
dimensions but also the crystal orientation. This 
takes far more computer time because the mat- 
rices to be inverted are no longer block diagonal. 
Nevertheless, the errors for the determination of 
moduli and angles are low because over 35 reso- 
nances were used in the fit. 

We review here the microscopic deformations 
at the SPT in the La,CuO, compounds, the 
Ginsburg-Landau Hamiltonian, and the expec- 
ted effects on the sound velocities. Using RUS 
measurements on LaZ_,Sr,CuO, and a com- 
parison with SrTiO,, we present direct evidence 

for breakdown of tetragonal symmetry at the 
Brillouin zone center, show how this can explain 

the very strong temperature dependence of chh 
above the TO SPT, and discuss some implica- 
tions. 

To understand what drives the TO transition 
in La,CuO,, consider first (fig. 11) the four 
Cu-0 bonds that lie in the Cu-0 plane and also 
form part of the 0 octahedra. Through the TO 
transition, these Cu-0 bond lengths remain 
fixed [49]. What does change is the angle be- 
tween the two 0-Cu-0 diagonals of the octa- 
hedra. In the tetragonal phase, the diagonals are 
perpendicular. In the orthorhombic phase they 
scissor slightly, doubling the unit cell. This Jahn- 

Fig. I I, We illustrate here the arrangement of ions (not to 

scale) of La,CuO,. c‘u is the solid circle. the open circles are 

0 and the shaded circles are La. 

Teller-like distortion has the effect of increasing 
the length of either the (1 1 0) or the (1 IO) axis. 
This is shown schematically in fig. 12. For the 
crystal to accomodatc this, the Cu-0 plane also 
buckles in the corresponding direction, taking 
the octahedra with it so that they tilt. This tilt is 
the x-point soft mode. Of course, a given oc- 
tahedron could tilt in either of four possible 
directions, i.e. in the positive (I 10) direction, 
the negative (1 1 0) direction. the positive (1 10) 
direction, or the negative (1 10) direction. Thus 
both kinks (positive-negative tilt phase error) 
and twins (1 1 0) versus (1 IO) tilt are possible, 
and the order parameter must have two com- 
ponents, q, and q?. 

Because any possible tilt preserves mirror sym- 
metry, either sign of tilt is equivalent. Therefore 
any coupling of the Brillouin-zone-edge oc- 
tahedron-tilt phonon mode to any zone-center 



* 

I,lg. 12 Shown IS a diagram showing the 0 atom\ 1n the 

(‘II+O plane (solid circles) and the 0 atoms at the apace\ 01 

the 0 octahedra (shadrd circle\) projected onto the (‘~0 

plane. I‘he c’u atoms arc directly beneath the undisplaced 0 

atom\ and arc not ahown. IJpon tramition to the orthcr- 

rhombic slate. the apical C) atoms displace as shown hv the 

arrows (a twin would have displacement\ in the (‘u-0 plant 

perpendicular to those shown. i.e. turn the figure on it\ xltle). 

The tctragonal unit cell is the smaller dashed quay-c. Ihe 

orthorhombic one i\ the larger dashed square. although It I\ 

really a rectangle with the longer G&s parallel to the arrow\ 

acoustic phonons must hc quadratic in lowest 

order. Moreover. most of the effects of the 
phase transition are seen in c’,,,,. the shear mocl- 
ulus for deformations of the Cu-0 plane. This is 

also easily WCII hccausc when the O&t ‘WC) 
diagonals scissor. the xqual-e base of the tetrz 
gonal unit cell becomes a rhombus in the ortho- 
rhombic phase (fig. II). Deforming the quurc 
into a rhombus is exactly equivalent to a ( ,,, 
shear. WC have, as vet. IIO measurements above 

the TO transition in. La.C’uO, because our K1JS 
ccl I cannot handle such temperatures. However. 
in La, s,Sr,, , , (‘~0, the TO transition occurs at 

713 K. ;I very convenient temperature. 

In lig. 13 \h#c how the Irewnant frquenc\ IIt 

211 cigenmode 01’ the \ingle crvstal ot La, ,,, 

St- ,, ,,C’i10, ;IS ;I function of tcmpe;ature 7‘ and iii 

lig. IJ WC shob 1 iv ~4 ‘I‘ where Q is the qualit! 
factor for the resonance. Numerical analysis ot 
the motion establishes that the eigenmode of tig. 
I3 cicpends almost purely on c,,,,. Absent dy- 
namical effects, WC would treat the tempeature 
dependence of c’(,,, with the same Ginsburg- 

Landau (G-L) Hamiltonian used for SrTiO,. A\ 
with SrTiO,, simple quadratic coupling arid no 

dynamics produces only a step discontinuity in 

(1,1<1 at the SPT. This is not what the data show. 
The data fit a Curie-Weiss (C-W) softening 01 
the form 

Fig. 13. Shown is the normalized resonant trequency squad (proportional to a modulu\) for :i I .;L, ,,,Sr,, ,,C‘uO, mode that i\ 

nwrly pure c,>,, as a function of temperature (circles). The \,olid lint IS a <‘uric-W&\ fit to the datx The gap in the data just helo\% 

30 K is evidence of hymmetryhreaking effect\. 
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Fig. 14. The scaled inverse quality factor lOOO/ Q is proportional to the loss or ultrasonic attenuation in the single crystal 01 

La, Kf,SrO ,JCuO,. Very near the SPT at 223 K. the attenuation increases dramatically. but at temperatures well above the SPT but 

still in the Curie-Weiss region, no excess attenuation is observed. 

where T, is 223 K, ch6 is a temperature-indepen- 
dent constant and the fit, shown as the solid line 
in fig. 13, is accurate to 0.2% over more than a 
decade in T,,/( T - Tc). 

Gaussian fluctuations of the order parameter 
[9], self-consistent phonons [7] and linear coup- 
ling between strain and order parameter [44] all 

yield a C-W behavior for chh. For Gaussian 
fluctuations, the critical exponent for the specific 
heat and for the elastic moduli is A = 2 - d/2 
where d is the dimension of the order parameter. 
In our system, the order parameter is two- 

dimensional, thus the critical exponent (the 
exponent of l/( T - T,)) is unity, in agreement 
with the data. However, our C-W fit is over a 
temperature range of about 80 K (To = 1.47 K). 
This is a very large range for fluctuations to be 
important, much larger than the range for the 
similar SPT in SrTiO,. An upper-bound estimate 
for the fluctuations regime [9] is found by using a 
few lattice spacings for the coherence length, and 
by using a 1% (SrTiO, has about a 10% modulus 
discontinuity at its phase transition temperature) 
modulus discontinuity to obtain a fluctuation 
range of about 1 K, comparable to the region in 
fig. 14 where the ultrasonic attenuation increases 
sharply. Thus it appears very unlikely that 2-D 

Gaussian fluctuations can explain what we ob- 

serve. 
A self-consistent phonon treatment of the 

anharmonic potential associated with the zone- 
edge soft mode of the 0 octahedra can also 
produce C-W modulus softening [7]. For this 
sort of treatment to work, the zone-edge soft 
mode must be linearly coupled to the zone- 
center acoustic mode. The 1-D treatment in ref. 
[7] deals with this by inserting the anharmonic 

spring, used in the shell-model construct to de- 
velop the self-consistent phonon dispersion 
curve, in series with the ion cores. Thus this 
spring contributes to the potential energy for any 
value of k, the phonon wave vector. 

Neutron scattering measurements [4] show 
that the soft mode is part of the phonon branch 
corresponding to cqJ, not chh. Without some 
linear coupling term to the chh dispersion curve, 
it is not easy to see the applicability of self- 
consistent phonons. Were such a term to be 
added, the model would be forced to become 
explicitly 3-D, and because both the coupling 
and the energies would depend on the anhar- 
monicity, the C-W exponent would likely be 
lost. 

The third possibility we consider here is the 
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Fig. 16. Plotted are the data of fig. 13 for the chh mode and also data for the c,? mode for the La , xoSr,1 ,,CuO, single crystal as a 

function of temperature. These modes have different symmetries so that no avoided crossing is expected. The surprisingly large 

effect may arise from symmetry-breaking at the Brillouin-zone-edge produced by Sr disorder combined with the soft-mode-driven 

SPT. 

is, they average over many unit cells. Because 
RUS is also a k = 0 probe, it too should see a 
tetragonal structure. That it does not might be 
related to the destruction of zone-edge symmetry 
because of the disordered Sr doping. At small k. 

the Sr concentration fluctuations average out, 
and a tetragonal structure is observed. However, 
RUS is sensitive to the strain susceptibility. At 
temperatures well above (150 K or more) the TO 
transition, the x-point soft mode has negligible 
effect on cIlh (see fig. 13). At temperatures some- 

what above 300 K, all the sound velocities begin 
to decrease on cooling as a result of the coupling 
between the soft mode and the strains. This 
coupling might also carry with it a symmetry- 
breaking term at temperatures near the TO tran- 
sition related to the total softening of cbh. 

Such a symmetry-breaking effect is only ob- 
servable if some effect, the SPT for this example, 
makes the moduli vary sufficiently rapidly that 
nominally orthogonal modes cross, and if the 
experimental probe can clearly separate the re- 
sponses of the modes that cross. We know of no 
other ultrasound probe with this property. Thus 
RUS is capable of extracting new information as 
well as providing an alternative high-precision 
general ultrasound probe. 
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