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Abstract

A mapping of a two-dimensional S = 1/2 quantum spin ladder, having two-spin and four-spin

interactions between spin sites, to a one-dimensional Ising chain enables the calculation of exact

results for many physical quantities. Investigations into the ordering and spin states of the model

develop a ground state phase diagram and provide possible insight into anomalous experimental

results. A simulation of inelastic neutron scattering determines scattering intensities in the form

of discrete amplitudes at absolute zero and finite temperatures.

1



INTRODUCTION

Quantum spin ladders have been a subject of great interest to condensed matter re-

searchers over recent years. Investigations of layered cuprate systems suggest that phe-

nomena occurring in planes possessing ladder geometry may be the cause of high-Tc super-

conductivity in the material [1]. Another exciting application in the study of spin ladders

arises from the fact that the structures show evidence of quantum critical phase transitions,

namely transitions taking place at absolute zero as opposed to thermal phase transitions at

finite temperatures.

Most modeling of these intriguing systems has been based on interactions between pairs

of sites on the ladder structure. One proposed model makes use of two-spin interactions

(between two spin-1/2 sites on the same rung) and four-spin interactions (between four sites

on two rungs). In mapping the Hamiltonian of this two-dimensional ladder system to a one-

dimensional Ising chain model, exact solutions for correlations between ladder sites become

attainable, in turn leading to projected results for neutron scattering.

Since neutrons are spin-1/2 and chargeless they make for an ideal medium of scattering to

analyze the spectral properties of this ladder model. The correlations between ladder sites

allow the scattering function (an extremely important part of the scattering cross-section for

inelastic neutron scattering) to be solved. This function reduces to seven discrete intensities

of neutrons scattered from the ladder as a function of temperature, energy transfer, and

values of interaction parameters. Computational analysis of these results yields essential in-

formation on the energy levels and spin states of the ladder model. The wealth of knowledge

gleaned from the scattering simulation can also further characterize real ladder materials

currently being tested.

S = 1/2 SPIN LADDER MODEL

The proposed model consists of N sites along a two-legged ladder (having Nr = N/2

rungs), each with S = 1/2 spin. In the interests of attaining exact solutions, periodicity is

imposed on the ladder by attaching the sites labeled N and N − 1 to the sites labeled one

and two (see Figure 1). A two-spin interaction along the rungs and a four-spin interaction
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Figure 1.  (J. H. Barry and M. W. Meisel)

4321N

7531N - 1

8642N

FIG. 1: The two-legged quantum spin ladder has N , S = 1/2 spin sites with imposed periodicity.

between the sites on two rungs define the Hamiltonian of the system as

H = −
Nr
∑

j=1

[

J2 σ2j−1 · σ2j + J4(σ2j−1 · σ2j)(σ2j+1 · σ2j+2) + µhz(σz
2j−1 + σz

2j)
]

, (1)

where J2 and J4 are parameters of the two-spin and four-spin Heisenberg interactions, re-

spectively. A longitudinal magnetic field µhz, with µ as the electron intrinsic magnetic

moment, interacts with the z components of the spins.

A previous article on this model by Barry and Meisel employed a method of rung transfer

matrix (in which energy eigenvalues of the Hamiltonian operating on adjacent rungs are

arranged according to spin states) to solve for the partition function Z = Trace e−βH, with

β = 1/kT (where k is the Boltzmann constant and T is temperature) [2]. Knowledge of Z

allowed many thermodynamic quantities of the system to be determined, such as free energy

and entropy per rung. These properties enabled development of a picture of the ground state

(T = 0) of the system for varying values of the interaction parameters J2 and J4 (see Figure

2). Interestingly, at T = 0 and hz = 0, the spin states of the rungs of the ladder do not

depend explicitly on the values of the interaction parameters themselves but rather their

ratio (α = J2/J4). For ray lines in J2 − J4 space between α = 2 in the first quadrant and

α = 6 in the third quadrant, the two S = 1/2 spins on the rungs of the ladder combine

as singlets. Between α = 2 in the first quadrant and α = −2 in the second quadrant, the

rungs have a triplet ground state, and from α = −2 in the second quadrant and 6 in the

third quadrant, the rungs alternate between singlets and triplets, giving rise to a “staggered

region in J2 − J4 space.

Since the rung orientations in Figure 2 occur in the ground state of the model, the ray

lines α = −2, 2, and 6 serve as quantum phase boundaries (as opposed to thermal phase
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FIG. 2: The T = 0 phase diagram in J2 −J4 interactrion parameter space has boundaries at α = 2

(first quadrant) separating the singlet state (white) and the triplet state (blue shaded), α = −2

(second quadrant) between the triplet state and the “staggered” state of alternating singlets and

triplets (gray shaded), and α = 6 (third quadrant) between the “staggered” region and the singlet

region.

boundaries occurring at finite temperatures). Quantum critical transitions have captured

intense interest in recent years with collapsing energy scales and rapid changes in the or-

derings of systems [3]. These phenomena manifest themselves in diverging length scales and

discontinuous behavior in physical properties that emerge from the exact results discussed

in later sections of this paper.
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ISING CHAIN REPRESENTATION OF THE MODEL

Taking advantage of the longitudinal symmetry of the ladder model, one can replace the

single site spin operators σi with rung spin operators by

µj ≡
1

2
(σ2j−1 · σ2j + 1) , (2)

with the scale factors chosen such that

µj =











+1 triplet states of jth rung,

−1 singlet state of jth rung.
(3)

This change of variables results in the partition function taking the form of that of an

Ising chain, an extensively studied model with many exact results in the literature [4]. With

Ising variables, the Hamiltonian of the ladder model becomes

H∗ = −



 J∗
2

∑

〈i,j〉

µiµj + µhz∗
∑

j

µj



 , (4)

where J∗
2 = 4J4 denotes a pair interaction between neighboring sites on the chain equivalent

to the four spin interaction on the ladder. The transformation also produces a magnetic

field along the chain µhz∗ = 2(J2 − 2J4) + 1

2β
ln(2 cosh 2βµhz + 1), which has an effective

temperature dependence (β = 1/kT ) arising from the temperature dependence of the spin

states of the rungs.

Reducing the dimensions of the problem from the two-dimensional ladder to the one-

dimensional chain simplifies calculations of correlations between spin sites (namely in di-

agonalizing matrices of rank 2 instead of rank 4). Well established results applied to the

present model’s partition function produce

〈µj〉 = (sinh µhz∗)(sinh2 µhz∗ + e−4βJ∗

2 )−1/2 , (5)

〈µiµj〉 = 〈µi〉
2 + (1 + e4βJ∗

2 sinh2 µhz∗)−1(λ−/λ+)j−i , j ≥ i, (6)

with λ± emerging as eigenvalues from the Ising chain transfer matrix. The 〈. . . 〉 notation

signifies a thermal average of quantum mechanical operators, the computation of which

features prominently in the neutron scattering theory developed by van Hove, from which

the simulated scattering in this paper takes its form [5].
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From Equation 2, one can now relabel ladder rung sites as Ising chain sites,

µ1 =
σ2 · σ2 + 1

2
, µ0 =

σ3 · σ4 + 1

2
, and µ2 =

σ5 · σ6 + 1

2
. (7)

Relationships between Ising variables now organize as 〈µ0〉 defined as a local magnetiza-

tion, 〈µ0µ1〉 representing the first neighbor pair correlation (between two sites on the chain

separated by one rung spacing), 〈µ1µ2〉 representing the second neighbor pair correlation (be-

tween two sites separated by two rung spacings), and continure in this fashion for thermal

averages of any number of Ising variables.

The presence of λ−/λ+ to powers of inter-rung spacings in correlation functions suggests

a characteristic length scale η for the model, which arises as

η = (ln |λ+/λ−|)
−1 , (8)

with dimensions of inter-rung spacings. The magnitude of η gives a measure of the ordering

of the system as the number of lattice distances over which two spins correlate with one

another. Figures 3a and 3b exhibits the thermal evolution of η for ratios γ = J4/J2 in all

quadrants of J2 − J4 space. In the singlet and triplet regions of the phase diagram (Fig. 2),

the magnitude of η goes to zero as T approaches zero and infinity, and in the singlet region

has a peak at finite temperatures. The sharp peak in correlation length in the first quadrant

of J2 − J4 space (Fig. 3a) reaches an order of 106, suggesting short to intermediate range

ordering in the system, while the rounded maximum in the fourth quadrant (Fig. 3b)

indicates only short range ordering. In the “staggered” region of J2 −J4 space η approaches

infinity as T goes to zero; in this region the system evinces long range ordering. Finally on

the phase boundary lines α = −2, 2, and 6, η stays finite at T = 0, another hallmark of

quantum critical phase transitions.

NEUTRON SCATTERING SIMULATION

In any scattering experiment, the double differential scattering cross section (the fraction

of neutrons scattered between angles Ω and Ω + dΩ with an energy between E and E + dE

[6]) must be solved. For neutron scattering [5],

d2σ

dΩdE
= (

γ
′

e2

mc2
)2

Ns
�

k1

k0

|F (q)|2
∑

ij

(δij − cos qi cos qj)S
ij(q, ω) . (9)
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FIG. 3: Correlation length η as a function of reduced temperature T (k/J2) and γ = J4/J2 shows

drastically different behavior for different quadrants of J2 − J4 space. The singlet region features

local maxima at finite temperatures, and along with the triplet region, η goes to zero in the ground

state. Correlation length in the “staggered” region goes to infinity at T = 0, exhibiting long range

ordering.

Here e and m are the electron charge and mass, Ns is the number of scattered neutrons,

γ
′

is the neutron magnetic moment, k0 and k1 are the initial and final wave vectors of

the neutrons, q = k0 − k1,
�
ω is the energy transfer of the neutrons, and F (q) is a form

factor given by the spin structure of the target sample. The scattering or response function

Sij(q, ω) is evaluated over different coordinate indices in the sum
∑

ij. By the symmetry of
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the Ising magnet, only the x component contributes to the neutron scattering,

S xx(q , ω) =
∑

n

1

2π

∫ ∞

−∞

dt
∑

m

exp[iq · (Rm − Rn) − iωt]〈σx
nσx

m(t)〉 , (10)

with Rm and Rn being position vectors for sites m and n on the ladder.

Through symmetry considerations, the only non-zero contributions to S xx(q , ω) come

from q = 0 and q = π/a, where a is the distance between two adjacent rungs. Substitutions

of Ising variables for ladder variables (Equation 7) unfold Equation 10 as

S xx(0, ω) =
1

2π

∫ ∞

−∞

dt e−iω t〈
2

3
(µ0 + 1) eiω̃µ0,µ1,µ2

t〉, (11a)

S xx(
π

a
, ω) =

1

2π

∫ ∞

−∞

dt e−iω t〈
2

3
(2 − µ0) eiωµ0,µ1,µ2

t〉. (11b)

where the labels µ0, µ1, and µ2 can take values of plus or minus, and the temperature-

independent scattering frequencies are defined as

ω3 ≡ ω+++ = −ω−++ = 4
� −1(J2 + 2J4), (12a)

ω1 ≡ ω++− = ω+−+ = −ω−+− = −ω−−+ = 4
� −1(J2 − 2J4), (12b)

ω2 ≡ ω+−− = −ω−−− = 4
� −1(J2 − 6J4), (12c)

and

ω−3 ≡ ω̃−++/2 = −4
� −1(J2 + 2J4) = −ω3, (13a)

ω−1 ≡ ω̃−+−/2 = ω̃−−+/2 = −4
� −1(J2 − 2J4) = −ω1, (13b)

ω−2 ≡ ω̃−−−/2 = −4
� −1(J2 − 6J4) = −ω2. (13c)

Since the function S xx(q , ω) now spans over discrete variables q and ω, the integral in

Equations 11 a and b turns into a sum over distinct states,

Sxx(0, ω) = A0δ(ω) , (14a)

Sxx(
π

a
, ω) =

∑

n

Anδ(ω − ωn) , n = ±3,±2,±1, (14b)

and An give temperature-dependent scattering amplitudes with physical significance as in-

tensity of neutron scattering per ladder site. The amplitudes corresponding to the previously
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defined scattering frequencies depend on the correlations along the Ising chain as

A3 =
1

12
(1 + 3〈µ0〉 + 2〈µ0µ1〉 + 〈µ1µ2〉 + 〈µ0µ1µ2〉) (15a)

A−3 =
1

4
(1 + 〈µ0〉 − 2〈µ0µ1〉 + 〈µ1µ2〉 − 〈µ0µ1µ2〉) (15b)

A2 =
1

12
(1 − 〈µ0〉 − 2〈µ0µ1〉 + 〈µ1µ2〉 + 〈µ0µ1µ2〉) (15c)

A−2 =
1

4
(1 − 3〈µ0〉 + 2〈µ0µ1〉 + 〈µ1µ2〉 − 〈µ0µ1µ2〉) (15d)

A1 =
1

6
(1 + 〈µ0〉 − 〈µ1µ2〉 − 〈µ0µ1µ2〉), (15e)

A−1 =
1

2
(1 − 〈µ0〉 − 〈µ1µ2〉 + 〈µ0µ1µ2〉), (15f)

A0 =
2

3
(1 + 〈µ0〉), (15g)

where

〈µ0 µ1 µ2〉 = A 〈µ1 µ2〉 + 2B 〈µ1〉 + C (16)

enters as a linear combination of local magnetization 〈µ1〉 and second neighbor pair cor-

relation 〈µ1µ2〉, with coefficients arising out of the partition function operating on Ising

variables.

RESULTS AND DISCUSSION

Figures 4 and 5 demonstrate the drastic qualitative differences between the scattering

amplitudes and correlations from which they arise for ray lines in the first and third quad-

rants of J2 − J4 space. The prevalence of A−2 in the ground state of the first quadrant (Fig.

4b) speaks to the presence of a finite energy transfer at T = 0, a feature which does not

appear in the more diverse spectrum in the third quadrant (Fig. 5b). Another intriguing

characteristic emerges in the observation that the spatial correlations in the third quadrant

(Fig. 5a) saturate to infinite temperature limits at higher temperatures that those in the

first quadrant (Fig. 4a). This property suggests that some interesting physics can be stud-

ied at relatively high temperatures for ladder systems with J2 and J4 < 0 (corresponding to

antiferromagnetic interactions).

While the proposed model may not exactly match any actual materials, the exact solu-

tions gained from keeping the model simple can yield great insight and direction into future

studies of ladder systems. The complete excitation spectrum of a ladder with two-spin and
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four-spin interactions has been calculated as a function of temperature, energy and inter-

action parameters. The explorations into the ordering of such a system can provide new

outlooks on the origin of high-Tc superconductivity in ladder systems. Evidence of quantum

critical phase transitions have revealed themselves, further developing another topic of great

research interest.
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FIG. 4: (a) Ising correlations and (b) neutron scattering amplitudes for the specific ray line J2 = J4

in the first quadrant of J2 − J4 space. On this ray line, as well as all others in the singlet region,

the dominance of A−2 in the ground state produces a positive, T = 0 energy transfer.
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FIG. 5: (a) Ising correlations and (b) neutron scattering amplitudes in the third quadrant of J2−J4

space for the ray line J2 = 5J4. This ray line features a qualitatively different ground state from

the first quadrant (Fig. 4); the odd numbered Ising correlations (〈µ0〉 and 〈µ0µ1µ2〉) go to zero

whereas in the first quadrant they go to 1 at (T = 0), and the even numbered correlations 〈µ0µ1〉

and 〈µ1µ2〉 alternate in sign as opposed to the degeneracy in the first quadrant. The ground state

also features diverse amplitudes, the energy transfer of which collectively add to zero, in contrast

to the ground state energy transfer in the first quadrant.
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