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   Abstract--A passive shim insert is designed for a certain magnet of some measured dimensions, 
magnetic field, and field inhomogeneity.  This means that shims are magnet specific.  Quite often there is a 
need to shim the same magnet operated at different frequencies or field magnitudes depending on the probe 
inserted.  In this case, there needs to be multiple shims for the same magnet.  Previously, the design and 
construction of passive shim inserts have been made either by contracting out to a field mapping and 
shimming specialist or doing it in house. To develop a shim design algorithm so that the passive shim 
design and construction could always be done in house would be preferable and is the goal of this research.    

The design of a computer algorithm for passive shim design is conceivable with the guidance of 
the scientific literature and the goal is attainable through the computational aid of MATLAB. The design 
algorithm centers on the use of dipole modeling for the field contributions of the ferromagnetic shims.  The 
algorithm is designed to work on any magnet of any dimension, field and inhomogeneity with 
modifications in the necessary parameters.  The inputs to the algorithm are the measured field values of a 
particular spherical harmonic term, which come from the field mapping unit (FMU).  The outputs are the 
necessary magnetic moments of each dipole.  Thus, the algorithm gives a map of the various dipole 
strengths on the shim insert, which is a thin sheet or an unrolled cylinder.  The fact that the result of the 
algorithm is called a map suggests that is not the final product concerning the passive shims.  The map 
must be converted into a realization of the passive shims.   
 

I.  Introduction 
 
     n magnet science as it relates to nuclear magnetic resonance (NMR) spectroscopy and  
     other magnetic resonance and spectroscopy techniques, there is a push to not only 
have magnets with higher and higher magnetic fields but also with better and better 
homogeneity.  As an example, The National High Magnet Field Laboratory, NHMFL has 
plans on building a new hybrid called the series connected hybrid, SCH.  The SCH will 
have higher fields than other magnets with either pure resistive or pure superconducting 
sections.  More interestingly, it is planned to use less power and to have much improved 
field homogeneity in comparison to its predecessor, the 45T hybrid.   

Homogeneity as defined by Sauzade and Kan [1] is “the ratio of the maximum 
field variation ΔB to the total field B0 for a given volume”.  It is usually expressed in 
ppm (although sometimes as ppb) over a specified spherical region or diameter spherical 
volume (DSV).  The role of the homogeneity of the field in NMR is analogous to the 
function of the focus and zoom of a camera.  If the focus is not functional on a camera, 
then you will hardly be able to distinguish anything in the picture.  Similarly, if the 
homogeneity is insufficient or the inhomogeneity is too large, then you will not be able to 
distinguish between distinct resonant frequency peaks.  It is also true that the better the 
zoom on a camera, the more detail you can capture both far and near.  Sufficient field 
homogeneity along with higher fields means then that the researcher can capture more 
details of more substances under study.   

The more mathematical way to understand why NMR requires low 
inhomogeneity is the Larmor relation where ϖ is the resonant frequency, γ is the 
gyromagnetic ratio and 0B  is the magnetic field: 

 



                                              0Bγϖ =       (1) 
 

The proton value for γ  is 18 *10*675.2 −Trad .  The Larmor relation shows us that the 
resonant frequency is directly proportional to the polarizing magnetic field.  As an 
example, the aforementioned 45T hybrid is found to operate at a proton frequency of 
1.916GHz using the equation.  It is clear that a NMR magnetic field is required to be 
homogeneous or uniform throughout the sample volume in order to ensure proton 
resonance at the same frequency. 

If homogeneity is essential, then it must be guaranteed whatever the cost.  The 
question, however arises, why not build a magnet with the required inhomogeneity in the 
field built in.  Vadovic [2] states that “to meet this requirement through a complicated 
design and especially a precise and, therefore, rather expensive manufacturing and setup 
of the basic field generating system while allowing only negligible tolerances in the 
prescribed design parameters, is economically ineffective and technically often 
unrealizable with the given means.”  The solution lies in field shimming, which he 
advocates as he goes on to say that “to add a supplementary (correcting) field to the main 
magnetic field with the aim to obtain the desired shape over the localized region for the 
sum of both fields is economically more favorable.”  The technique of field shimming 
can be further divided into two categories depending on the source of the correcting 
magnetic field.  Passive or ferromagnetic shims refer to a strategic arrangement of a 
certain ferromagnetic metal or alloy that produces strong magnetic fields in the presence 
of a magnetizing field [3].  Active shims require current to flow through them, which in 
turn produces a magnetic field.   

If the correction of the inhomogeneity or variation in the field is the goal of 
shimming, then the characterization or analysis of the field must be an essential 
preliminary step.  Hoult and Roméo [4] provide an excellent text on magnet field 
profiling.  They write that in a volume through which no current passes, Laplace’s 
equation is satisfied by the scalar and vector potential as well as by the field itself.  The 
scalar potential is especially useful since it eliminates the initial need to work with 
Cartesian components.  Employing spherical polar coordinates and solving Laplace’s 
equation yields: 
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Note that the notation is taken from [2] and that the solutions containing r-n-1 are excluded 
since the potential is finite at r = 0.  The terms of this series, which form a complete set of 
eigenfunctions, are commonly called spherical harmonics.  The harmonics produced by 
the m = 0 case are called zonal harmonics.  They possess axial symmetry.  The rest of the 
harmonics ( 0≠m ) are called tessoral harmonics.  Their symmetry is less obvious since it 
depends on the value of n and m.  The function of )(cosθm

nP is called Legendre’s 
associated function where n is the order and m is the degree. The curious reader can learn 
more about these functions from [4] or from any textbook covering special functions.  
The usefulness of applying spherical harmonics is not immediately apparent, but it will 



be clear later.  The magnetic field can be found simply by taking the negative gradient of 
the potential:  
 

                                                  Φ−∇=B
ϖ

      (3) 
 

The x and y-components are ignored since one expects them to be much smaller 
compared to the desired field in the z-direction [5].  In the Operator’s Manual for the 
FMU-BBK Magnetic Field Mapping Unit of Resonance Research Inc (RRI) [6], the 
magnetic field is found to be the following: 
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The traditional way of expressing this infinite series utilizes Cartesian coordinates and 
scaled coefficients.  The rule for scaling the coefficients is given as: 
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Using this rule gives us the familiar series of field gradients where 
 z2 = ))(2/1( 222 yxz +− , c2 = 22 yx − and s2 = xy2 : 
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Now the advantage of spherical harmonics is clear, as the first term in the series is a 
homogeneous or uniform field.   

The goal of this research is to develop a passive shim design algorithm that will 
cancel out all the other existing terms or to ensure that only the homogenous field 
remains.  It has been shown by Jesmanowicz et al. that the design of a passive shim insert 
can be done using dipoles to model the fields due to small patches of ferromagnetic metal 
(nickel in this case but could be iron, steel, etc) that make up the shim [7].  This approach 
is taken in the development of the shim design algorithm with the hypothesis that the 
direct manipulation of spherical harmonics is not required in the design of a passive shim.  
In other words, one does not have to start with simplified shapes like elementary rings 
whose field in terms of spherical harmonics can be readily calculated and solve for 
various parameters of the shapes that lead to only one of the desired spherical harmonic. 
There is an in depth explanation of this technique in [4] for the interested reader.  To 
avoid confusion, it must be emphasized that the technique advocated here depends on 
spherical harmonics too since they are essential in profiling or mapping the field of the 
magnet.  Basically, the difference lies in how the correcting gradient or spherical 
harmonic is derived.  The passive shim design algorithm calculates using an error 
minimization algorithm the dipole strengths of the small patches in order to match a 
spherical harmonic of specified strength found in the magnet.  Thus, the success of the 
technique rests on dipole modeling and on error minimization and not on the direct use of 



spherical harmonics and on the manipulation of the shape parameters to derive the 
necessary correcting gradient. 
 

II.  Materials and Methods 
 
 The first step to creating the passive shim design algorithm is to study and master 
the basic building block, the dipole field.  In Griffiths [8] the dipole equation is given as: 
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The z-component of the field can be found by converting the spherical unit vectors into 
their Cartesian unit vectors.  After converting coordinates, zB  becomes:  
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The result can be verified by plotting the vector field ( yx BB , and zB ), which give us the 
expected circular patterns. 
 

 
Figure 1-Dipole Field 

 
In [9] the effects of a point dipole are modeled using the equation: 
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This is exactly the same equation ignoring the constant in front and noting that the sign 
has been reversed. 
 The next step is to derive the general function for the field ),,,,,( ''' zzyxBz φρ  
where ),,( zyx  are the coordinates of the field point and ),,( ''' zφρ are the cylindrical 
coordinates of the dipole.  That equation is expressed as where ''' cosφρ=x  and 

''' sinφρ=y : 
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 The following step is to use the preceding equation to generate the field of a 
passive shim tube with elements described by a matrix ijM .  A matrix ijM  for a ZX term 
is then constructed using the specifications given by RRI for a ZX shim.  The RRI design 
is a good starting place to become more familiar with dipole modeling and to begin 
developing the passive shim algorithm. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2-RRI ZX Shim Design 

There are a few important things to note about this design.  First, the thickness of 
metal shim piece is exaggerated in the drawing for emphasis and clarity.  In all actuality, 
the gauge is only .001”.  Second, the sizes of the two shim pieces are identical. Third, the 
type of spherical harmonic produced depends largely on the orientation of the shim 
pieces.   Referring back to (4) and (6), the index m of the ZX term is found to be 1.  Thus, 



the o180  separation of the two shim pieces is expected using the formula m/π  that [4] 
derived for the necessary separation to produce tessoral harmonics ( 0≠m ).  
 Returning again to the matrix ijM , the field produced by the array of dipoles is 
plotted in Cartesian coordinates and along a helical path.  Let’s consider first the plot in 
Cartesian coordinates, which is a group of 1D plots.   

 

 
Figure 3-Simulated RRI ZX Shim 

 
The above four plots in figure 3 show the field of the simulated RRI ZX shim as a 
function of either z or x.  The values of the field are arbitrary since all the dipoles have 
unit magnetic moment.  The dipoles are positioned on a cylinder as pictured in figure 2.  
The dipole dimensions are 1mm x 1mm.  There are 210 dipoles in the vertical direction 
and 143 in the circumferential direction, which makes a total of 30,030 dipoles.  Two 
important observations should be made here.  First, the plots demonstrate that the 
simulated RRI ZX behaves like an ideal ZX near the origin.  A ZX shim is expected to be 
zero along the z-axis and near the origin, which we see in the plot in the upper left corner.  
If we move off of the axis to say x = 5mm, then we expect the field to increase linearly 
with z, which the adjacent plot confirms.  The plot in the lower left corner is puzzling at 
first glance.  The ZX should be zero along x-axis and clearly it is not.  However, the 
change in the field over the range of x-values is nearly an order smaller than for the case 
when z = 5mm.  Thus, the field in the plot in the lower left corner is relatively zero and 
the field in the adjacent plot varies linearly with x.  Second, all four of the plots have a 
noticeable field (about .75-.85) with z = 0 or x = 0 where we expect the field to be zero.  
According to Hoult and Roméo, this result is actually to be expected since not all 
harmonics of a given parity may be eliminated in a passive shim design.  They explain 



that this is due to the fact that we do not have the luxury of reversing the permeability, 
which we can do with currents in an active shim [4].   

The second plot is especially important since the FMU measures the field along 
helical path.  This plot shows the field similarly to as it appears in the FMU software.  
The two plots in figure 4 show an ideal ZX and the simulated RRI ZX along a helical 
path.  The path of the helix is from 10mm below the magnet centerline to 10mm above.  
The radius of the helix is 7mm and its pitch is 2.5mm, which are typical values used for 
the FMU.   The ZX term has a value of 1ppm over the 20mm range.  The two plots look 
quite similar at first glance.  However, the simulated RRI ZX looks like less like a 
straight-cone, which is typical of a ZX.   
 

 
Figure 4-Ideal and Simulated RRI ZX Shim (1ppm) 

  
 The last step in creating the passive shim design algorithm is to synthesize the 
previous work into a functional algorithm or program that designs the shim using error 
minimization.  The algorithm works by solving the following linear algebra equation 
where A is the dipole matrix of (n x k) dimension with n equal to the number of field 
points on a helical path and with k equal to the number of dipoles, x is the column vector 
of unknown magnetic moments needed to match the desired spherical harmonic term and 
B is the column vector of that term’s field values: 
 

                                                             0=− BxA
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The unknown magnetic moments are solving using the Moore-Penrose pseudo-inverse, 
which is the pinv command in MATLAB.  The pseudo-inverse calculates using a singular 
decomposition value algorithm the least squared error values for the unknowns.   
 

 
Figure 5-ZX Design Using Error Minimization 

 
Figure 5 displays a passive shim design for a ZX using the design algorithm.  The dipoles 
are made to be 5mm x 5mm.  The magnetic moments are adjusted so that no negative 
value exists.  The design has the o180 separation or phase shift between the top and 
bottom halves like the RRI design.  In other words, where the top half is red and at its 
highest value, the bottom half is blue and at its lowest value. 

 
III.  Discussion 

 
 There are a few problems associated with the development of a passive shim 
design algorithm.  First, an appropriate size for the dipole must be selected when using 
dipole modeling.  The general reason for this is that a magnetized material is in fact made 
up of many dipoles, which are nothing more than tiny current loops.  Each atom has its 
own magnetic moment and group of atoms with the same magnetic moment make up 
magnetic domains.  It is clear then that increasing the dipole size means that the 
approximation is greater and that there will be potentially greater error.   In the simulation 
of the RRI ZX shim design, there is always a bit of error in trying to reproduce the exact 



dimensions of RRI ZX design.  It is possible that this error is what causes the simulated 
ZX to look slightly uneven.  The field behaves quite similarly to an ideal ZX with a 
dipole size of 1mm x 1mm, at least this was the case near the origin.  If the dipole size is 
increased beyond this, the field begins to behave less and less like a ZX.  In the passive 
shim design algorithm, the result was less sensitive to the dipole size.   That is to say that 
the dipole size could be increased up to 5mm x 5mm and the algorithm will give a map 
with the corresponding ZX symmetry.   A possible reason for the algorithm to be less 
sensitive to dipole size is in the power of the error minimization of the pseudo-inverse.  
The pseudo-inverse has problems minimizes the error if the dipole size is increased past 
7.5mm x 7.5mm.  At this size, however, the ZX shim map lacks any obvious ZX 
symmetry.   
 The second problem also relates to dipoles.  The dipole field in the z-direction can 
be derived using (7), which results in (8).  When (8) is used in simulating the RRI ZX, 
the plot is inverted as if multiplied by negative one.  If (9) used the plot is inverted back 
to the expected orientation.  It is unclear at the moment why this is so.  Nevertheless, the 
sign is chosen so that the fields are oriented similarly.    
 The third problem is to decide on over-determining or under-determining the 
system of linear equations for solving for the unknown magnetic moments.  Over-
determining means that there are more points along the helical path than dipoles.  In other 
words, there are more equations than unknowns.  Under-determining, therefore, means 
more unknowns than equations.  The motto taught in school is to have the same number 
of equations as unknowns.  Unbelievably, both conditions can be used to match the 
helical plot of an ideal ZX.  However, the over-determined system produces maps with 
smoother curves and better symmetry.  In the design algorithm, the system is made 
optimally over-determined by having 10x as many points as dipoles.  Smaller factors 
seem to lessen the smoothness and symmetry, whereas larger ones seem to make portions 
of the map disappear.  

The fourth problem is that performing the pseudo-inverse on large matrices is 
very computational.  The computer made available initially is a Dell with only 256 MB of 
RAM and a 1.7GHz processor speed.  The computer performs the pseudo inverse only 
with a dipole size of 10mm x 10mm, which means a matrix size of 2940 x 294.  After 
many attempts to solve the problem at smaller dipole sizes, it was clear that a computer 
with more memory is required.  The next computer, also a Dell, has 3GB of RAM and a 
3.1GHz processor speed.  This computer performs the pseudo-inverse at a dipole size of 
5mm x 5mm, which means a matrix size of 12180 x 1218, in about five minutes. 
 

IV.  Conclusion 
 
 Based on a symmetry analysis, the shim design algorithm seems to be working.  
The pseudo-inverse is a powerful tool, but it requires enormous amount of memory at 
dipole sizes of 5mm x 5mm and smaller.  There is room improvement in the algorithm.  It 
would be preferable if the solution could be found without having to compensate for the 
negative magnetic moments.  What is done in the algorithm is the quick and easy 
solution.  This entails adding a homogenous field to the positive dipoles, which is the first 
solution that [7] proposed.  The second is to use a linear programming algorithm to solve 
for the magnetic moments needed to shim several field gradients with the constraint that 



the magnetic moments must be positive.  The algorithm is not useful and not truly 
complete until one finds a method of realization.  There is a method in mind but there 
was not enough time to develop it.  The method uses circular holes of varying diameter to 
represent the dipoles, but it is not clear at the moment if this technique will work with 
dipole sizes of 5mm x 5mm. 
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