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The overall goal for this project is to describe the 2D-MIT as melting of the Wigner crystal
and to develop a microscopic model. A first step for developing this theory is the calculation of
the potential energy in a Wigner crystal, since the potential energy dominates at low density. To
perform this calculation, we use the Ewald summation method. As a result, we have calculated
the confining potential experienced by the lattice site, as well as for the additional interstitial sites.
Additionally, we have created 2D and 3D plots to quantify our results, from which we learn the deep

confining potential well on which the reference electron sits, on the scale e2

a
, is more than an order

of magnitude larger than the potential well describing the interstitial site. We find the interstitial
electron can be described as a nearly-free electron model, and the lattice electron by a tight-binding
(localized orbital) model.

I. INTRODUCTION

The central goal of materials science is designing and
fabricating new materials with interesting transport, op-
tical, and thermal properties. Most of these materials are
neither good metals (conductors), nor good insulators;
however, because of thermal fluctuations, every material
has a finite, but often small, range of conductivity at non-
zero temperature. Metal-insulator transitions (MIT) oc-
cur when the behavior of the material changes from the
one characteristic for conductor (resistivity decrease with
decreasing temperature,) to the behavior characteristic
for an insulator. Systems that go through the MITs are
some of the most studied materials in condensed matter
physics (e.g. high-temperature super conductors, man-
ganites, and doped semiconductors.)

In the past, there has been much success in describ-
ing the behavior of metals, insulators, and MIT using
models based on weakly interacting electrons1. Based on
the filling of the electronic band, this theory describes
insulators having a completely filled band, and a metal,
having the Fermi energy lie inside the band. However,
there are many materials that according to the simple
band picture of weakly interacting electrons should be a
good conductor, but have very low conductivity. Such
an example would be a Mott insulator2, observed in 2D
metal-oxide semiconductor field-effect transistor (MOS-
FETs) systems, whose strong repulsion of electrons af-
fects the metallic/insulating behavior of the material.
One other such theory, which poses additional conflict-
ing ideas with the weakly interacting band theory, is An-
derson localization3. Here, strongly disordered systems
cause the wave functions to become bounded or localized,
increasing the observed insulating behavior. Despite the
prevailing success of models based on noninteracting elec-
trons, an adequate, unifying microscopic theory of MIT
is still missing.

With the latter thought in mind, it is the work of Do-
brosavljević (et al.,) to formulate a comprehensive unify-

ing theory in which the strong electron interactions and
disorder are accounted for. It is here, in such a theory,
that the calculation of potential energy in a Wigner lat-
tice becomes an initial step.Throughout the remainder of
this paper, the derivation, results, and conclusion of this
calculation will be developed.

II. MODELING THE 2D MIT

In the low density regime, 2D electrons form the
Wigner crystal4,5. In this case, the electrons may be
treated within the tight-binding model, as localized or-
bitals belonging to the sites of the triangular lattice. The
overlap of the adjacent orbitals form the lower energy
band. As the density is increased, the electron-electron
interactions prevent the double occupancy of the lattice
sites. In the case of half filling, the only possible en-
ergetically favorable state the electron can hop to are
the interstitial sites; this forms the higher energy band.
This two band model permits, in the high density regime,
electron behavior to be modeled as a nearly-free electron
model. It is easy to see from Fig.1 and Fig. 2 the two
distinct energy bands as the electron “zig-zags” from the
lattice site to the interstitial site.

This method of electron transport is due to the
Coulomb interactions between the electrons, and it here
that the calculation of the Coulomb potential becomes
significant.

A. Classical Calculation of Coulomb Potential in a
Wigner Lattice

Because of the periodicity of the Wigner lattice, calcu-
lating the Coulomb potential yields itself well to Fourier
analysis. More explicitly, the Wigner lattice potential
satisfies the conditions φ(r) = φ(r + R) where r is the
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FIG. 1: 3D contour plot in 2D of Wigner lattice.Schematically
represents the “zig-zag” path of the electron from the lattice
site to the interstitial site.
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FIG. 2: 2D plot of Potential vs. Distance, where the scale

is e2

a
.This plot qualitatively describes the “zig-zag” path an

electron would take to hop from the lower energy band to the
upper band (i.e. interstitial site.

position vectors (1) and R is the translation vector (2):

r = xêx + yêy (1)

R = Rxâ1 + Ryâ2 (2)

where

a1 = (
31/2

2
)x̂ + (

1
2
)ŷ

FIG. 3: 3D plot of Potential vs. X vs. Y

a2 = −(
31/2

2
)x̂ + (

1
2
)ŷ

and Rx,Ry are integers. To construct the Wigner lattice
potential,we calculate the potential φ(r) at position r
within an infinite lattice:

φ(r) =
∞∑

i=1

qi

|r− ri| (3)

To ensure charge neutrality,a positive background distri-
bution is applied so that

∞∑

i

qi = 0

. This poses a problem, however, for (3) is a diver-
gent sum in the as i → ∞.To resolve this, we employ
a method developed by Ewald6 and extended by Parry7

to 2D, where the results are as follows:

φ(r) =
2π

A

∑

G6=0

G−2exp(ıG · r)erfc( G
2
√

η
)

+
∑

R

erfc(
√

η|r−R|
|r−R| )− 1

A

√
π

η
(4)

where G is the reciprocal lattice vector, A is the area of
the Wigner-Seitz cell, and

√
η is a parameter chosen to

obtain rapid convergence of both the lattice summations
in (4).

III. RESULTS

We have calculated the confining potential experienced
by the lattice sites, as well as for the additional intersti-
tial sites. Using XmGRACE and OpenDX, we have cre-
ated detailed 2D and 3D pictures quantifying our results
Fig. 1-3, from which we learned that the “big” potential
well, of the lattice electron, sits is a deep confining well
on the scale e2

a . Additionally, we can observe the poten-
tial well describing the interstitial site (electron) is much
shallower than the lattice site, by more then an order of
magnitude.
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IV. CONCLUSION

We conclude that the interstitial electron can be de-
scribed as a nearly-free electron model, while the lattice
electron by a tight-binding (localized orbital) model.
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