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We investigate the RKKY interaction strength between local magnetic moments placed in a nonmagnetic
host metal with disorder. We find that the average interaction strength will decrease to zero as disorder be-
comes strong. More importantly, we find that the distributions corresponding to different configurations of
disorder are strongly dependant on the strength of disorder. These distributions will develop power-law tails,
with a small, finite interaction strength. There seems to be universal power-law distribution that describes the
interactions in the limit of strong disorder.

I. INTRODUCTION

We examine a system in which local magnetic
moments are distributed throughout a nonmagnetic
host metal. These moments are known to interact
indirectly through the electrons of the host metal
in a mechanism called the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction. Since the RKKY interac-
tions are long-ranged, they facilitate magnetic order-
ing, and contribute to the overall magnetic properties
of the material.

These materials are commonly used in techno-
logical applications, such as diluted magnetic semi-
conductors. The effect of disorder in these systems
is not well documented, especially in the regime of
strong disorder. However, it is well known that the
introduction of disorder to such a material will al-
ter its electric and magnetic properties; for example,
it in limit of strong disorder, electrons in the system
will get bound to impurities. This process, known as
Anderson localization, changes the properties of the
metal to those of an insulator.1 In order to prevent
and overcome issues resulting from disorder in tech-
nological applications, we need theory to effectively
predict its effects.

We approach this problem by analyzing the distri-
butions of RKKY interaction strength corresponding
to different configurations of disorder. In 1987, Jagan-
nathan, Abrahams, and Stephen examined these dis-
tributions in the limit of weak disorder.2 Their results
can be obtained by simply assuming that the effect of
disorder is to introduce a random phase shift in the
susceptibility χ(R), where:

χo(R) =
2mkF cos(2kF R)

(2π)3R3
(1)

in the system without disorder. If one uses this
assumption– that is, that disorder changes only the

phase, and not the amplitude, of χ(R)– then by aver-
aging over all configurations of disorder, one would
find that the average value of χ(R) acquires an expo-
nential damping factor:

[χ(R)]av = χo(R)e−R/l (2)

where l is the mean free path. The average interac-
tion strength, therefore, will become negligibly small
as disorder increases. However, if we look at the sec-
ond moment,

[χ2(R)]av = 3
(

mkF

(2π)3

)2 1
R6

(3)

we find that it is independant of the disorder
strength. This implies that the typical value of inter-
action strength will remain the same as disorder in-
creases within the system. However, this is inconsis-
tent with our current theory of metals; it seems that as
disorder gets stronger, electrons should get bound to
the impurities, and the typical strength of the interac-
tions should become negligibly small. Thus, the idea
that disorder introduces only random phase shifts in
χ(R) must be incomplete.

In this paper we use a computer simulation to ex-
amine the effects of varying levels of disorder on the
distributions of interaction strength.

II. SIMULATING THE SYSTEM

We approach the problem by simulating the clean
and disordered systems with a FORTRAN program.
The interaction energy between two moments is
known to be proportional to their electronic suscep-
tibility, so by calculating the electronic susceptibility
as a function of the distance from each moment, we
can calculate the interaction strength between the two
moments.
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Figure 1: [χ(R)]av vs R: The average interaction
strength is weaker for higher disorder.
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Figure 2: [χ(R)]av ·R vs R: With the 1/R dependance
gone, we can see that disorder introduces a damping
factor to the average interaction strength.

To begin, we model the material as a finite one
dimensional lattice. To reduce any effects that could
be caused by approximating the continuous infinite
system with a discrete finite system, we choose the
number of lattice sites N such that N is as large as
possible without being excessively computationally
expensive. In our simulation, N = 500, and any pos-
sible effects of this finite size are discussed in section
IV.

We construct a tight-binding Hamiltonian (TBH)
of dimension NxN to represent the lattice system:

H =
∑

i

|i > εi < i|+
∑

ij

|i > Vij < j| (4)

where εi is the site potential at site i, and Vij is the
transfer matrix element between sites i and j. We take

Vij to be equal to V for i, j nearest neighbors and 0
otherwise. Physically, this represents a lattice system
in which each electron is bound to its lattice site, but
has a possibility of hopping to its neighboring sites.

We add a chemical potential µ to the diagonal el-
ements of the Hamiltonian matrix. To introduce dis-
order to the system, we simply add a random value
between −W/2 and W/2 to these potentials. By ad-
justing the parameter W , we can adjust the level of
disorder in the system. The clean system, for exam-
ple, corresponds to W = 0, and to increase the level
of disorder, we increase the value of W .

Next, the simulation calculates Green’s functions
G(ωn) for the system:

G(ωn) = (ωn −H)−1 (5)

where ωn are the Matsubara frequencies. From
this result, the simulation calculates the electronic
susceptibility:

χ(r1, r2) =
2
β

∑
ωn

Gwn
(r1, r2)Gwn

(r2, r1) (6)

where (r1, r2) correspond to the matrix elements.
Finally, by defining R = |r1 − r2|, we obtain data
for χ(R), where R is the distance from each moment.
Running the simulation hundreds of times provides
us with sufficient data to analyze the distributions of
susceptibility.

III. THE RKKY INTERACTION IN A
DISORDERED METAL

The simulation results for W = 0 agree with cur-
rent theory of RKKY interactions in one-dimensional
systems. That is, we find that:

χ(R) ∼ cos(2kF R)
R

(7)

The susceptibility in a clean system, then, is an os-
cillatory function that falls off with distance.

We then calculate the average susceptibility over
configurations, [χ(R)]av , and multiply it by R to re-
move the 1/R dependence. Figures 1 and 2 show
that the effect of disorder is to cause a decay in
[χ(R)]av · R. For weak disorder, we find that this re-
lationship can be expressed as an exponential decay
with R, in agreement with Eq. 2. However, since this
is a known result, what we are really interested in are
the distributions of χ(R) for varying levels of disor-
der.
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Figure 3: Unscaled P (χ ·R) vs χ ·R for W = 0.350: The
width is clearly dependant on R.
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Figure 4: Distribution for R = 100, W = 0.200. XT is
a better measure of width than the Gaussian.
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Figure 5: XT vs R on linear axes: The width of the
distributions decrease with increasing R.

Figure 3 shows that within a single level of dis-
order, the width of the distributions are dependant
on R. Cursory examination of the data indicates that
the distributions are distinctly non-Gaussian; con-
crete evidence of this will be provided shortly. This
is important for our analysis right now, since the
non-Gaussian shape of the distribution prevents us
from using the standard deviation as a measure of
the width of the distributions. Instead, we use XT ,
the typical value of susceptibility, as a measure of the
width, and we define it as:

XT (R) ≡ e< 1
2 ln χi(R)2> (8)

Here χi(R) refers to the value of each data point,
and the notation <> implies an average over all data
points. Figures 4 shows a comparison of standard de-
viation and XT for describing the width of the same
distribution. We can see that the standard deviation is
influenced by the long tails, and is far too large to be a
useful description of the width. XT , however, gives a
good approximation of the width of the distribution.

Examining XT for the distributions of [χ(R)]av ·R
for different levels of disorder (see Figures 5 and 6),
we find that within each level of disorder:

XT (R) ∼ e−R/ξ (9)

for sufficiently large R, where ξ is the localization
length. Therefore, if we define an adjusted suscepti-
bility,

χA(R) ≡ χi(R) ·R · e−R/ξ (10)
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Figure 6: XT vs R on semilogarithmic axes: Since this
plot is linear, XT must decrease exponentially with R.
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Figure 7: Scaled P (χA) vs χA for W = 0.350: After
scaling, the histograms collapse.
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Figure 8: P (χA) vs χA for multiple values of W: The
distributions are strongly peaked for higher disorder.

the distributions of χA(R) for large R will be en-
tirely independent of R within each level of disorder.
Figures 3 and 7 illustrate that the use of this adjusted
susceptibility causes these distributions all collapse
to describe a single distribution. Since each of these
distributions is the same, we can combine the data
from them all, and thereby obtain more robust distri-
butions for each level of disorder.

Now each level of disorder has a single charac-
teristic distribution formed by combining all χA(R).
as shown in Figure 8. We then plot the tails of the
distributions and find that for higher levels of disor-
der, these tails are linear on log-log axes, as shown in
Figure 9. This shows that the tails decay as a power-
law for higher disorder, and fall off more rapidly for
lower disorder.

The existence of these long tails indicates that the
width of the distributions for higher disorder cannot
be accurately characterized by their moments. The

moments of such a distribution would be extremely
large, while the typical value is in fact small. There-
fore, when understanding the magnetic properties of
such a material, we can consider the long range part
of the RKKY interactions to be irrelevant if the mate-
rial is sufficiently disordered.

Using data from multiple levels of disorder, we
calculate the magntiude of the slopes of these tails on
the log-log axes α such that:

P (χA) ∼ χ−α
A (11)

We then plotted α versus W (see Figure 10). α
seems to decay asymptotically towards some finite
value, suggesting that there is a universal value that
describes this distribution in the limit of very high
disorder.
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Figure 9: Tails of distributions on log-log axes: For
higher disorder, the tails decrease as a power-law.
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Figure 10: α vs W : α seems to approach a finite
value for strong W, suggesting that there is a univer-
sal value for this slope in the limit of strong disorder.
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Figure 11: l vs W and ξ vs W : Both the mean free path
and the localization length are proportional to W−2.

We also obtained data for l from Eq. 2 and ξ from
Eq. 9. Plotting l vs. W and ξ vs. W (see Figure 11),
we find that l and ξ are both proportional to W−2,
and therefore, l and ξ must be directly proportional
to each other. We find that ξ/l ≈ 3.685, which agrees
with the analytical approximation ξ/l ≈ π.

IV. POSSIBLE FINITE-SIZE EFFECTS

We would like to very briefly dispel concern that
our results are an artifact of using a finite-size lat-
tice rather than an infinite lattice. If the results are,
in fact, influenced by the size of the lattice, then we
could simulate the system for increasingly large lat-
tices, and then extrapolate the results for the infi-

nite lattice. This would be extremely computationally
demanding, but fortunately, we have sufficient evi-
dence to deem this unnecessary. Performing a simu-
lation on a system size N = 1000, which is one hun-
dred perfect larger than our initial system size, we
find a negligible change in our results. part of which
we can attribute to statistical error. Therefore, we as-
sert that our results are an accurate approximation of
the infinite system.

V. CONCLUSION

We have determined that distributions of interac-
tion strength are strongly dependant on the level of
disorder in the system. These distributions are dis-
tinctly non-Gaussian, with long tails that decay with
a power-law. We have evidence that as disorder in-
creases, these distributions will all fall off with the
same power-law, suggesting that there is a universal
distribution with a small, finite typical value in the
limit of strong disorder.
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