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The quantized conductance in quantum point contacts (QPC) was observed in 0.05mm Gold, 0.1mm Steel, 
and 0.025mm Aluminum wires. Steps occurred at the integer multiples of 2e2/h, usually at the time 
intervals of around 1ms. QPCs happened at a very slight contact, as the strings of atoms were forming 
bridges between the vibrating wires. These connections were comparable in dimensions to the wavelength 
of an electron. The experiment was based on the earlier work by E.L. Foley et al (American Journal of 
Physics, 67, 389(1999)).  
 
  

I. Introduction 
 
Since the invention of the first transistor 
electronic devices kept decreasing in 
size to improve performance and power 
consumption. If the technology will 
continue to progress at the present pace, 
the devices will become so small that 
they will no longer be governed by 
diffusive conduction model used today. 
Instead, nano-machines will obey 
quantum laws of nature, which are quite 
foreign to modern industry. Therefore, it 
is becoming increasingly important to 
investigate quantized conductance and 
behavior of matter at atomic scale in 
order to build reliable circuitry. Usually 
quantum contacts are made using 
sophisticated techniques and state-of-the 
art equipment. However, recently it was 
shown that quantum contacts can also be 
shown by gently vibrating two thin 
wires. This simple experiment, based on 
earlier work by E.L. Foley et al 
(American Journal of Physics, 67, 
389(1999)), will demonstrate how 
conductance across quantum point 
contacts between the wires of gold, steel 
and aluminum varies as more atoms 
come in contact with each other. It will 
also illustrate which of the metals is 

more suitable for this experiment. In 
addition, we will try to determine 
whether quantized conductance is 
affected by changes in current.    
 
 

II. Background Information 
 
It is still a question whether conductance 
steps, which occur in metals with Fermi 
wavelength λF close in value to atomic 
spacing, correspond to the actual 
conductance quantization, rather than to 
a simple rearrangement of atoms2-7. 
However, it is clear that as the Fermi 
wavelength λF becomes much larger the 
conductance steps will become less 
dependent on atomic rearrangements. 
For instance, the experiment involving 
nanocontacts in bismuth undoubtedly 
shows that the conductance steps, along 
with resultant histograms correspond to 
the number of allowed conduction 
modes. 1,7 Unfortunately, this experiment 
is only available at low temperature. For 
the purpose of our experiment we are 
using metals (Au, Al, Fe) at room 
temperature, with Fermi wavelength 
close to the atomic spacing, therefore the 
pattern of conductance steps may be 
affected accordingly.  



In order to understand what the 
conductance steps actually are and why 
they occur at the integer multiples of 
2e2/h we need to refer to a simplified 
explanation of this complicated 
phenomena1: 
 

1. I = Q/t = Ne/t =Nev/L    
 

Current is defined as the flow of charge, 
thus it is I = Q/t. Net charge Q, is the 
number of electrons N times the charge e 
of every contributing electron. In 
addition, time can be through of as 
velocity of an electron v, over the 
distance L that it travels. 
 

2. G = I/V = Nev/LV 
 

Conductance G is a reciprocal of 
resistance. 
 

3. ΔU = eV 
 
Drop in potential energy for every 
electron involved is simply its charge 
multiplied by the voltage across the 
sample. Thus, V = ΔU/e. 
 

4. G = Ne2v/LΔU 
 
From 2 and 3, we can infer that the 
conductance G is dependent on the 
number of electrons, their charge, 
velocity and drop in potential energy, as 
well as the length of the wire. However, 
the key to this problem lies in finding the 
number of electrons N, which contribute 
to the conductance.  
 

5. λ = L/n 
 

According to quantum mechanics for a 
particle in a box, in a box of length L, de 
Broglie wavelength of an electron can 

only take distinct values: λ = L/n, where 
n=1,2,3... 
 

6. v = h/λm 
 

In addition, it can be inferred from the 
Heisenberg Uncertainty Principle as well 
as from Quantum Mechanics for a 
particle in a box that v = h/λm, where h 
is Planck’s constant, m is mass, and λ is 
the wavelength of the electron. 
 

7. v = nh/Lm 
 

But because we know that the 
wavelength can only take discrete values 
we can infer that the velocity will also be 
distinct. Thus n = vLm/h.  
 

8. N = 2LmΔv/h  
 
According to Pauli Exclusion Principle 
no two electrons in a solid can have 
identical quantum states, thus there can 
only be n energy states that fill up the 
wire to a certain level (Fermi energy). 
Since the current flows between the two 
terminals of the wire, one terminal has to 
be higher than the other by ΔU. 
Therefore, the electrons below the Fermi 
energy of one terminal can flow into the 
unoccupied states of the other terminal. 
Because of the electron degeneracy, the 
actual number of electrons N, 
contributing to conductance, will be 
twice the number of energy states n. This 
will result in N = 2LmΔv/h, for a specific 
range of energy ΔU.  
 

9. K =  mv2/2 
ΔK = mvΔv 

 
Kinetic energy for an electron of mass m 
and velocity v is K = mv2/2. However, 
we are interested specifically in 
electrons that attribute to conduction G, 



which will exist at the specific range of 
energy ΔE and speed Δv. Thus change in 
kinetic energy ΔK becomes mvΔv. 
 

10. G = (2LmΔv/h)e2v/LΔU 
G = 2LmΔve2v/hLΔK 
 

From 8 and 2 we can derive that G  = 
2LmΔve2v/hLΔU. The change in 
potential energy of an electron will 
correspond to the change in kinetic 
energy of the electron, therefore ΔU = 
ΔK.  
 

11. G = 2LmvΔve2/hL(mvΔv) 
 

From 10 and 9, we can infer that G G = 
2e2/h. Thus the quantized conductance 
steps in our experiment will occur at the 
integer multiples of 2e2/h. These steps 
will be flat plateaus that will jump 
rapidly from one integer value to the 
next. Remarkably, the quantized 
conductance steps, as well as the 
integers where they occur, allow us to 
“see” the surface of the material.9 This 
property of quantized conductance can 
potentially facilitate many current 
applications.  
 

III. Experimental Setup 
 
The circuit used for our experiment 
consists of HP34401A Multi-meter, 
HP3325B Function Generator, ITHACO 
1211 Current Preamplifier, HP35665A 
Dynamic Signal 
Analyzer and 
locally assembled 
10kΩ-100Ω voltage 
divider (Figure 1). 
We found the 
adjustable voltage 
feature on 
HP3325B 
particularly useful 

because it allowed us to easily change 

voltage across the sample, without 
replacing the voltage divider. HP34401A 
was used in the beginning of the 
experiment to make sure that the voltage 
across the sample is of the right 
magnitude. Its use during the experiment 
is optional. ITHACO 1211 Current 
Preamplifier was set to the sensitivity of 
10-3A, with the constant multiplier of 10. 
Thus the voltage on the output terminal 
was 100 times larger than the current on 
the input terminal. HP35665 Dynamic 
Signal Analyzer was used to capture the 
incoming voltage on the interval of 4000 
ns and transfer the resulting data to the 
computer via GPIB interface. We found 
HP35665 to be slow for this experiment, 
because it could only take 256 points of 

data every 1000 ns, 
which is the necessary 
timeframe. Although 
the performance of 
HP35665 was 
satisfactory, we 
recommend using 
cheaper storage 
oscilloscopes1 that take 
data at a higher 

Figure 1. Experimental Setup 
 
 
 
 
 
 
 
 
 
 
 
1. HP3325B Synthesizer/Function Generator. Adjustable voltage 

0-10V. Output resistance 50Ω. 
2. ITHACO 1211 Current Preamplifier. Represents current in 

terms of voltage. 
3. Sample. 
4. HP34401A Multimeter 
5. HP 35665A Dynamic Signal Analyzer 
6. Dell Dimension 8300 PC equipped with GPIB Interface Board 

and Labview 6.1 

Figure 2. Computer Software 
 

 



frequency. In addition, we found it 
particularly helpful to use Labview 6.1 
to communicate with HP35665 through 
the GPIB interface as well as process 
and output data. Software for Labview 
6.1 was written using HP35670A driver 
(Figure 2). 
The sample was assembled using a piece 
of wood and horizontally adjustable 
lever. Copper contacts were placed 
opposite to each other, while gold, steel, 
and aluminum wires were soldered on 
top of the contacts. The contacts were 
then mounted on the lever and soldered  
to BNC cables to enable easier 
connection to the instruments (Figure 3). 
The wires were then vibrated by gently 
tapping the table or horizontally 
adjusting the lever. 

 
IV. Results 

 
The primary focus of this experiment 

is to observe the quantized conductance 
steps in the 0.05mm gold wires. The best 
results were achieved at 2V (20mV 
across the sample) (Figure 5). Histogram 
(Figure 6) shows clear peaks at 1, 2, 4, 7, 
and 9. Histograms of other staircase 
functions looked similar, but 
unfortunately lacked high resolution, due 
to inability of HP35665 to measure more 
than 256 points per 1ms. Measurements 

were also taken at 10mV, 50mV, 75mV 
and 100mV. Data above 20mV proved 
to be inconsistent, especially at 75mV 
and 100mV where steps practically 
vanished. This can be attributed to the 
electron heating effects1.  Although 
quantized conductance at higher currents 
was less common, gold is still a great 
metal to use in the experiment. Overall 
data of 1x106 points gathered at 20mV, 
shows a clear peak at 2e2/h (1). Perhaps 
decreasing the wire diameter, as well as 
setting up the sample under a 
microscope can improve the results. 
While using larger wires, 0.1mm Steel, 
quantized conductance became less 
evident (Figure 7). Lower conductance 
steps were infrequent and isolated, while 
the majority was seen around 20e2/h 
(10). Staircase functions became 
narrower and contained less steps. We 
attribute it to the diameter of the wire, 
which could make the material more 
resistant towards vibrations that are 
crucial for the formation of the quantum 
point contacts. In addition, the atomic 
structure of the steel can be the cause of 
the appearance of the steps at the higher 
conductance. Overall, conductance was 
measured at 20mV, 50mV and 100mV, 
yielding the best results at 20mV.  
Similarly, quantized conductance was 
seen in aluminum at 20mV (Figure 8). 
However, the results were rare, proving 
that aluminum is not suitable for this 
kind of an experiment. Even at higher 
voltages (75mV) creating a contact 
between two aluminum wires was 
problematic, primarily because of the 
oxidation. The only results were 
obtained by twisting the wires together 
and gradually tearing them apart. 
Furthermore, because of the 
awkwardness of the method and rarity of 
the contact between the aluminum wires, 
it is unclear whether the staircase 

Figure 3. Sample 
 

 
1. Gold, Steel, Aluminum wires 
2. Horizontally adjustable lever handle 
3. Lever 
4. Wood (vibration isolation) 
5. BNC cables 



function (Figure 8) is at all a 
representation of quantized conductance. 
Unlike gold and steel, which easily 
exhibit staircase functions, a more 
sophisticated setup is required to 
determine if quantized conductance 
exists in aluminum wires. Oxidation is 
possibly a factor, since atomic bridges 
that cause quantum point contacts might 
be unable to exist altogether. 

In addition, we found it 
necessary to adjust conductance, as 
described in E.L.Foley, by including the 
output resistance of the voltage source as 
well as residual resistance. 
 
Gc=(G-1-(Rres+ Rout))-1 

 

We found residual resistance to vary for 
every metal and voltage used.  Rres 
helped us to shift the histograms peaks 
to the right spots. 
 Overall, the experiment 
demonstrated that it can easily be set up 
in a lab and can be used to explore the 
properties of quantum point contacts, 
especially in gold and steel wires. While 
the experiment requires originality, 
especially in sample setup and data 
acquisition, we find these challenges to 
be a great learning tool for college 
students, that sheds the light on many 
aspects of modern physics lab.  
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Figure 5. Quantized Conductance Steps in gold wires. (0.05mm 20mV) 
 

 

 
Figure 6. Histogram of Quantized Conductance Steps in gold wires (0.05mm 20mV) 

 
 



Figure 7. Quantized Conductance Steps (.1mm Steel wires at 10mv,)  
 

 
Figure 8. Quantized Conductance Steps (.025mm Aluminum wires at 20mv, 
RRES=450Ω)  

 


