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Theory and Introduction 

Thermal expansion and magnetostriction are bulk properties of a material that 
give us information about the inner workings of the lattice and its components.  The 
volumetric thermal expansion of a material is derived from the Maxwell relations and 
describes the change in volume as a function of temperature at a constant pressure.  
Likewise, magnetostriction describes volumetric changes as a function of magnetic field 
at constant temperature and pressure: 
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where αv is the coefficient of volumetric thermal expansion, λv is the coefficient of 
volumetric magnetostriction, V is the volume of the material, T is the temperature, and H 
is the applied magnetic field.  Experimentally, it would be very difficult to measure the 
volume of a material as you vary the temperature or magnetic field so experimentalists 
will usually only measure the change in size of one dimension at a time.  The coefficients 
measured from each side can then be added to find the total volumetric thermal expansion 
or magnetostriction of the material.  This may seem to be a cumbersome project, luckily, 
however, most materials have a regular crystal structure that will simplify the 
measurement.  For example, in a cubic paramagnetic lattice all sides of the unit cell are 
equal lengths and have antiparallel dipoles.  Therefore the thermal expansion and 
magnetostriction are equal in all directions and,  
 
 a V = 3a L , and 
 
mV= 3mL . 

 
In a tetragonal structure two sides are equal and a third side is not.  Here the expression 
for thermal expansion is: 
 
a V = 2a a + a c , 
 
where the axes of the lattice are a, b and c and a is the same length as b. Furthermore, the 
general expression for volumetric magnetostriction for any lattice and any magnetism is: 
 
mV= ma+ mb+ mc. 
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 Thermal expansion is closely linked to other thermodynamic properties of a 
material through the Maxwell relations; therefore by having information about one of 
these properties, you automatically have information about all of them.  An example of 
this would be the relationship between the heat capacity and the thermal expansion of a 
material, first observed by Grüneisen.  Grüneisen noticed that αv/C was essentially 
constant at low temperatures (where C is the heat capacity).  He expressed this as:  
 

C
a v = c V

l , 
 
where κ is compressibility, V is volume and γ is a dimensionless proportionality constant 
known as the Grüneisen parameter.  

 

Dilatometer 

To measure thermal expansion accurately it is convenient to use a method of measuring 
capacitance.  By measuring the capacitance between two parallel plates you can find the 
distance between the plates through a very simple expression: 

C = d
f 0 A

, 

where A is the surface area of one of the plates, d is the distance between them, and ε0 is 
the permittivity of free space, a well known constant with the value 107/4πc2 or 8.842 x 
10-11 (m2/s2)-1.  The accuracy of the measurement depends only on how accurately the 
instrument can measure the capacitance, which means that an apparatus using capacitance 
to measure thermal expansion can have a very high degree of accuracy.   A typical 
capacitance bridge can measure digits accurately up to 10-18 F—eighteen digits after the 
decimal place (six digits in picoFarads, the unit used on most capacitor bridge displays).  
Using this information we can calculate, theoretically, how accurately we should be able 
to measure changes in the size of a sample in a parallel capacitor plate apparatus: 

C = d
f 0 A

, 

2d
2C = d2

f 0 A
, 

using the fact that Od
OC . 2d

2C
, Δd = ΔC d2/ε0A, and if you use values so that d ≈ 1cm and 

A ≈ π x 10-2 m2 and the fact that accuracy of the capacitance ΔC ≈ 10-18,  
 
Od . (8.842 # 10- 11(m2

s2)- 1) (r # 10- 2 m2)
(10- 18 F) (10- 2 m)2

= 3.6 # 10- 11m;
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which is equivalent to 0.1 Å—a tenth of the distance between atoms!  Measurements of 
this resolution can reveal what’s happening to a lattice on an atomic level.   
 In order to achieve this resolution, the dilatometer design and assembly is 
extremely important.  In the experiment that I helped Victor Correa conduct, the cell 
(Figure 1) consists of two parallel plates each being 1.11 cm in diameter (a. and b.) where 
the sample is mounted underneath the bottom capacitor plate (b.), allowing the bottom 
plate to move vertically when the sample expands or contracts. The initial distance 
between the plates is set by adjusting the screw (d.) to change the height of the sample 
and the plates that secure it (b., c., and the sample move as a unit).  The springs act to 
secure the sample between the two plates and are mounted around poles for stability and 
guidance.  The advantage of mounting the sample underneath the bottom capacitor plate 
rather than simply between the plates is mainly so that you can use the definition of 

capacitance, C = d
f 0 A

, which is defined with the restriction that the space between the plates 
is a perfect vacuum (and not a chunk of material).  It would also be difficult to mount a 
metallic material between the plates of a capacitor without shorting the circuit.   
 One of the things that must be measured before one can make accurate 
calculations of the distance between the  

 
 
 
 
 

Figure 1: 
Dilatometer design. 
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plates is the constant A—the surface area of a plate.  It would be possible to calculate A 
from the diameter of the capacitor plates, however it is much more accurate to simply 
measure ε0A with a known distance and capacitance.  Measuring the capacitance at a 
number of different distances and plotting C vs. 1/d should produce a straight line with a 
slope corresponding to your experimental proportionality constant between distance and 
capacitance.  Figure 2 shows the calibration we produced for our dilatometer with an 
experimental proportionality constant of 8.80 x 106 pF•Å.  Our theoretical value is 8.6 x 
106 •Å; which turns out to be very close to our experimental result—a satisfying 
reassurance. 
 With this constant we are able to change 
our measured capacitances to distances and plot 
them versus the temperature at which they were 
measured. Since the change in distance  
between the plates is equivalent to the amount 
the sample has expanded or contracted, the linear 
thermal expansion of the sample is the derivative 
of this curve, a

L
= d

- 1
2T
2d .  If we then rotate the 

sample (assuming it has a tetragonal lattice) and 
measure the linear thermal expansion along one 
of the other two axes we can easily translate the 
linear thermal expansion into volumetric thermal 
expansion: 
 

 
a V = 2 da

1
2T
2dae o+ dc

1
2T
2dc .

 
  
Similarly, the magnetostriction of the sample can be calculated as follows: 
 

mV = 2 da

1
2H
2dae o + dc

1
2H
2dc .

 
 

 
 
 
Cell Effect 
 

One unavoidable problem that can dramatically alter the results of a measurement 
measurement is the thermal expansion of the cell.  Inevitably, the dilatometer will also 
expand and contract as the temperature of the apparatus changes.  The cell effect will 
change the distance between the capacitor plates regardless of whether or not a sample is 
mounted.  Ideally, it would be nice to ‘erase’ this effect.  One way to attempt this is to 
measure the thermal expansion of the material that the cell is composed of, and then 
simply subtract this from the measured thermal expansion of the sample.  The cell we 
used for our measurements is made of oxygen-free high conductivity (OFHC) copper, 
and to determine the cell effect we mounted a 27mm3 copper cube and measured the 

Figure 2: Calibration 
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thermal expansion several times over a wide range of temperatures. To test the reliability 
of our cell effect, we measured the thermal expansion of a 27mm3 aluminum cube and 
compared our calculated results (taking the cell effect into account) with well-known 
published results.  Figure 3 shows our cell effect and Figure 4 shows that the published 
results do indeed match our measurements.   
 We calculated the thermal expansion of aluminum by looking 
closely at the components of our cell that would affect the distance 
between the capacitor plates, shown in Figure 5.  Following is the 
derivation of the coefficient of thermal expansion for any sample in 
our cell.  First notice that: 
 
lc= ds + lp + ls + lb

s, 
 
and if a copper sample is used: 
 
lc= dCu+ lp+ lCu+ lb

Cu. 
 
Therefore, 
 
ls= lc- lp - ds - lb

s, 
 
and because the definition of thermal expansion for any sample in the cell is, 
 

a s= ls

1
2T
2lse o,

 
 
we can differentiate the equation for ls to find αs: 
 

ls

1
2T
2lse o= ls

1
2T
2 lc- lp- ds- lb

s` j .
 

 
This can be simplified by using 
 
lc- lp= dCu+ lCu+ lb

Cu

 

Figure 3:  Cell Effect
Figure 4:  Aluminum data calculated from cell effect 

compared to published data.   

Figure 5: Components 
considered for cell 
effect calculation. 
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from the above equation for lc in the case of a copper sample in the cell, so that 
 

ls

1
2T
2lse o= ls

1
2T
2 dCu+ lCu+ lb

Cu- ds- lb
s` j .

 
 
Distributing with foresight produces,  
 

ls

1
2T
2lCue o + ls

1
2T

2 (dCu- ds)e o+ ls

1
2T
2lb
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1
2T
2lb

s

f p,
 

 
where we will now use the fact that lCu /lCu = lb

Cu /lb
Cu= lb

s /lb
s=1: 
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Finally, we notice that lCu , lb

Cu, and lb
s are all copper and therefore, 

 

lCu
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Subsituting we have:   
 

ls

lCu a Cu+ ls

1
2T

2 (dCu- ds)e o+ ls

lb
Cu

a Cu- ls

lb
s

a Cu= ls

lCu+ lb
Cu- lb

s
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1
2T
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At room temperatures with samples of comparable sizes,  
 
lCu+ lb

Cu. ls+ lb
s, and lCu+ lb

Cu- lb
s. ls(RT) . 

 
Therefore,  
 

ls

lCu+ lb
Cu- lb

s

f p . ls(T)
ls(RT) . 1,

 
 
and finally,  
 

a s. a Cu+ ls

1
2T

2 (dCu- ds)e o.
 

 
This is the expression used to compute all thermal expansion coefficients for our cell.  
 It may seem appropriate to also take the cell effect into account when making 
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magnetostriction calculations, however this is unnecessary.  Although the size of a 
sample may change dramatically with changes in magnetic field, the size of OFHC 
copper hardly varies because copper has no intrinsic magnetism.  In fact the cell effect 
due to magnetic field is two orders of magnitude smaller than data from the material we 
are measuring.    This leaves our definition of linear and volumetric magnetostriction 
unaltered: 
 
mL= d

- 1
2H
2d ; 

 
mV= ma+ mb+ mc. 
 
 
Our Sample 
 

After correcting our thermal expansion data for the cell effect, we were able to 
calculate the linear thermal expansion and 
magnetostriction along the c-axis of our sample, 
Ce.5La.5RhIn5.  This compound is a derivative of 
CeRhIn5, but it is doped with lanthanum so that every 
other cerium atom is replaced with lanthanum as 
depicted in Figure 6.   
Cerium is magnetic, making CeRhIn5 paramagnetic at 
room temperatures and antiferromagnetic below 3.8K.  
Lanthanum and cerium have very similar chemical 
properties and atomic weights, therefore doping 
CeRhIn5 with lanthanum does not change the lattice 
structure.  However, lanthanum is not magnetic, and 
because of this Ce.5La.5RhIn5 has a lower magnetism 
than CeRhIn5.  The two compounds should still behave 
similarly, but the effect of the decreased magnetism 
should also be apparent when comparing different 
properties of the material.  Thermodynamic properties 
of CeRhIn5, including thermal expansion, have been 
measured and we expect our results to mimic the 
published material, but with modified features because 
of the lanthanum doping.  Thermal expansion data for 
CeRhIn5 has been published by T. Takeuchi et al.1 and 
is shown in Figure 7.  The important features occur at 
3.8K, 25K, and 75K.  At 3.8K there is a large peak 
along the c-axis and slightly smaller peak at the same 
temperature along the a/b-axes. This feature aligns 
exactly with a feature in the specific heat and has been 
identified as a magnetic transition called the Neél 
Temperature; which signifies a magnetic phase 
transition between paramagnetism and 
antiferromagnetism.  At 25K there is a strong 

Figure 6: CeRhIn5 or 
Ce 5La 5RhIn5

1 

Figure 7: Linear thermal expansion 
of CeRhIn5.  (a): c-axis and (b): a/b-

axes1 
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minimum along the c-axis (although no apparent feature along the a/b-axes).  The 
theoretical explanation for this feature involves lifting the six-fold degeneracy in the 4-f 
levels that is predicted by the crystalline electric field model.  Around 75K the two axes 
mimic each other in a gently sloping increase in α typical of metals.  Because of the 
similarities between CeRhIn5 and Ce.5La.5RhIn5 we expect to see these same features, or 
very similar features, displaced by the addition of lanthanum.    

B.E. Light and A.L Cornelius2 published heat capacity data for various samples of 
CeLaRhIn5 ranging from 0-50% lanthanum (Figure 8).  It is apparent that as the 
lanthanum doping increases the Neél temperature shifts to lower temperature and is 
progressively suppressed.  Because doping weakens the magnetic interactions in the 
material and the Neél temperature marks the transition between two different magnetic 
phases, this result is not surprising.  It is interesting, however, that at a 50% lanthanum 
doping the Neél Temperature disappears, replaced by a slight hump at 2.5K, and the 
curve experiences a drastic upturn at low temperatures.  The curve’s upturn results from a 
quantum critical point that occurs at 40% lanthanum.  At 50% lanthanum the sample is 
now behaving as a non-Fermi-liquid.  The hump, however, cannot be explained by this 
phase transition and it is proposed that it is due to a certain amount of short range 
magnetic ordering in the material.  To confirm the behavior of  Ce1-xLaxRhIn5 around the 
quantum critical point we measured both a sample that is doped 40% and 50% with 
lanthanum. 

Light and Cornelius went on to measure the heat capacity of 50% lanthanum 
samples in magnetic fields of various strengths because of the appearance of non-Fermi-
liquid behavior at that concentration (Figure 9).  Their results show that as the field is 
increased, the hump grows; which is consistent with the proposal of short range ordering.  
The upturn due to the non-Fermi-liquid phase translates to higher temperatures with 
increased field, eventually merging with the hump.  We expected to see similar behavior 
in the magnetostriction of our sample.   

A.D. Christianson and A.H. Lacerda3 measured the resistivity and 
magnetoresistance of CeRhIn5 and LaRhIn5 along both the c-axis as well as the a/b-axes.  
The purpose of measuring both these materials is to be able to distinguish the features 
due to magnetism from the features due to lattice effects and electronic interactions.  
Their results show the same anisotropy seen in Takeuchi’s heat capacity measurements, it 
is expected that we also witness this directional-dependence in thermal expansion data.  

Figure 9:  Transmutation of the Neél 
Temperature with magnetic field.2 

Figure 8: Suppression of the Neél Temperature 
with La doping2 
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However, resistivity data is not as useful to us as heat capacity because heat capacity, 
thermal expansion, and magnetostriction are all bulk properties of a material whereas 
resistivity is a property involving transport—a specific path through the material.   

 
 

 
Experiment 
 
Throughout the experiment we used both 20-Tesla and 17-Tesla 
magnet systems, both with variable temperature insert (VTI) 
cryostats.  Our dilatometer was kept in a vacuum-tight cylindrical 
brass chamber with a conical seal using high-vacuum grease and 
Teflon tape (Figure 10).  The cryostat is made up of coaxial 
cylindrical chambers; the outer chamber is filled with liquid 
nitrogen that is separated from room temperature by a thin layer 
of vacuum.  Another vacuum layer separates the liquid nitrogen 
from the inner layer; which contains liquid He4 at 4.2K (and very 
well isolated from the ambient temperature outside the cryostat).  
The probe sits inside the VTI which is sealed from the liquid 
helium except for a small valve, which allows the user to control 
the amount of He4 in the VTI.  If enough He4 is allowed in the 
VTI for the probe to be sitting in a pool of liquid He4 the 
minimum temperature the sample would be able to reach would 
be exactly 4.2K.  By pumping the He4 and decreasing the pressure 
in the VTI it is possible to bring the temperature down to 1.2K 
(see the He4 phase diagram, Figure 11).  The temperature is then 
translated to the sample from the top of the conical seal, through 
the metal and to the sample space, and also (to a lesser extent) 
through the sides of the brass chamber and the small amount of 
gas that is left in the vacuum area.  In fact, if the temperature of 
the sample is observed to cool very quickly it means that more 
gas than desirable has seeped into the chamber and it is probable 
that a leak has developed at the seal.  

Figure 10: Dilatometer 
and probe. 

Figure 11:  He4 phase 
diagram. 
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The electromagnets are superconducting coils of Nb3Sn intertwined with copper.  
The copper acts as a low-resistance alternate route for current at room temperature.  In 
the event of a quench—where the magnet unexpectedly becomes non-superconducting 
and suddenly has a lot of energy to transfer—Nb3Sn becomes non-superconducting and 
has a substantial resistance, so the current will instead travel through the copper.  The 
copper wire creates less heat and conducts more efficiently, and will hopefully alleviate 
some of the stress on the system if a quench does indeed occur.  The coils are situated 
within the liquid helium and kept at or below 4.2K.  If the temperature of the coils ever 
rises above the critical temperature of Nb3Sn (~10K) they will become non-
superconducting and the magnet will quench.  

The circuit diagram in Figure 12 shows roughly how a superconducting magnet 
operates.  Current from the power source enters the coils and will circulate in the 
superconducting region as long as the heater is off.  After the current is introduced into 
the superconducting circuit the source can be disconnected.  Increasing the field from this 
point is as straightforward as increasing the current, but it is important to remember that 
the current must be increased slowly to avoid a large amount of induced flux through the 
coils.  It is more difficult to reduce the field of the magnet.  For example, if you were to 
turn on the heater without supplying any current from the source, the current in the coils 
would dissipate quickly through the heated portion of wire (this portion of the wire is 
carefully contained by balancing thermal conductivity and heat capacity of the material of 
the wire) and the induced flux could breach the current limitation for superconducting 
Nb3Sn and quench the magnet.  Instead, you should supply a current from the source 
equal to that within the coils.  This makes it possible to dissipate current through the 
heater without inducing any flux.  From this point, the current can be slowly decremented 
from the source to reduce the magnetic field.  As long as the current is reduced slowly 
there is no risk of quenching. Once the desired field is reached, the source and the heater 
can again be cut off, leaving the remaining current to circulate indefinitely in the 

Figure 12: Electromagnet circuit model. 

heater 

Superconducting region 
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superconducting region. 
To take measurements we are using a Lakeshore DRC-91CA temperature 

controller, an Andeen Hagerling 2500A 1kHz capacitance bridge, and a Oxford PS 180 
current source. Two ways in which to take measurements are continuously or with a 
temperature series.  They are both controlled externally with LabView (a data acquisition 
program).  A temperature series is a user specified series of set points.  This method 
requires a program that will reset the set point when called on to do so to the next 
requested value.  The continuous mode simply communicates with the computer as fast 
as requested (or to the capability level of the instruments).  The temperature controller is 
wired to a thermometer inside our dilatometer. Because temperature is just a function of 
resistance specific to a material, these two quantities are interchangeable and the 
resistance of a material can be used to measure temperature.  An effective thermometer 
functions as a metal at high temperatures and a semiconductor at low temperatures. At 
low temperatures a plot of resistance versus temperature for a semiconductor has a very 
steep slope, allowing a slight change in resistance to correspond to a significant change in 
temperature.  Likewise, a metal at higher temperatures has a 
considerable slope and its resistance translates fairly 
accurately into temperature. 

The Andeen Hagerling capacitance bridge measures 
the capacitance between the plates of the dilatometer using a 
Wheatstone-like bridge circuit.  Because of the shape of the 
Wheatstone circuit (Figure 13), the unknown capacitance (Cx) 
can be calculated from the relationship, 

 

R2

R1 = Cs

Cx .
 

 
 Using this expression, the bridge can accurately determine an unknown 

capacitance (such as the capacitance in our dilatometer).   
Finally, because the user controls the flow of current into the coils of the magnet, 

the blah can easily compute the corresponding magnetic field using the following 
physical law: 

 
B = n 0 NI, 
 
where B is the magnetic field in the direction of the current through the coils, µ0 is 

the permeability of free space (4π x 10-7), N is the number of coils per unit length, and I 
is the current through the coils.   

 
The magnet source, capacitance bridge, and temperature controller must all 

communicate with the computer program to record various capacitances and the 
temperatures or magnetic fields that they are associated with.  One potential problem that 
can provide inaccurate data is an inconsistency between the temperature at the 
thermometer and the temperature of the sample and the capacitor plates.  In hopes to 
prevent this from occurring, the dilatometer is constructed to be an excellent thermal 
conductor and can transfer heat quickly and uniformly throughout the cell.  If, however, 
the cell is heated or cooled too quickly this disparity could still occur, and the collected 

Figure 13: Wheatstone 
Capacitance Bridge Circuit. 
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data will be erroneous.  Care should be taken to change the temperature of the cell slowly 
when using the continuous method of measurement to ensure accurate data.   

An alternative to this approach is to take data with a temperature series.  The 
temperature series function has a built in system that tests for fluctuations before taking a 
measurement.  It will first acquire a set point from a series of temperatures created by the 
user, then use an equipment specific gain curve defined as a polynomial: a2T+bT+c, to 
set three parameters calculated from the gain curve and the given set point: percentage, 
integral, and derivative (PID).  These parameters are used to deduce the most efficient 
heating scheme to reach the requested set point.  Once the temperature is within two 
percent of the desired set point, the program will begin to check for stabilization.  It 
determines temperature stability by checking that sixty independent measurements taken 
every three seconds are within 20mK of each other.  Once temperature stability is 
established, the program checks the stability of the capacitance value by calculating the 
derivative of capacitance with respect to time and will only take a measurement when this 
quantity is sufficiently low.  As might be expected, using this process takes a long time.  
The highest efficiency is dependent on the accuracy of the gain curve, and even with the 
most accurate curve possible one measurement takes a minimum of three minutes.  This 
accuracy is hard to achieve, it could take days to find the right gain curve.  The 
measurements we took in the 15 Tesla system took about 3 minutes per data point at low 
temperatures and sometimes over 20 minutes at higher temperatures.  A series of data 
could take between 20 and 24 hours of measuring.   

 
 
 

Our Measurements 
 
 Most of our thermal expansion measurements were taken warming up (rather than 
starting at room temperature and cooling down) with a temperature series because of the 
heightened accuracy of the procedure.  We mounted the sample so that we would be 
measuring along the c-axis, polishing the surfaces so that the capacitance plates would 
indeed lie parallel to each other.  The data we collected was very smooth—a good sign 
because any variation is magnified when taking the derivative to calculate thermal 
expansion or magnetostriction.  From the collected data we were able to calculate the 
linear thermal expansion coefficient and the coefficient of magnetostriction using 
formulas stated above and two data analysis programs: Igor and Origin.  I mostly used 
Igor and Victor used Origin as a result of office computer space—Origin is limited to 
PC’s where Igor is compatible with both.  Both of us experimented with different ways of 
analyzing the data that would preserve the real shape of the curve while minimizing noise 
and unwanted fluctuations.  For example, it turned out to be more accurate to take the 
derivative before interpolating to the number of necessary data points rather than 
interpolating points that might alter the derivative of the data.  I also made a point to use 
smoothing curves as late as possible in the analysis to avoid smoothing out important 
details, and used Igor’s most accurate technique for differentiating and fitting smoothing 
curves:  cubic spline.  Cubic spline fits a cubic polynomial to three data points and 
interpolates and differentiates along that polynomial.  The more common alternative to 
this method is to interpolate along a linear curve between points and look only at directly 
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neighboring points to perform a derivative.  
 
 
 
Magnetostriction 
 
 
 We measured the magnetostriction of a 1.51mm 
sample of Ce.5La.5RhIn5 at three different temperatures: 
1.65K, 2.99K, and 8.95K (these were the values where the 
temperature remained stable).  Figure 14 shows a plot of 
the coefficient of magnetostriction versus applied 
magnetic field for these values.  Notice that each set of 
data very closely follow the same linear relationship.  This 
is convincing evidence that our sample is exhibiting 
itinerant paramagnetism.   We can show this by starting 
with the definition:  
 
B = H + 4r M ,  
 
where B is the intrinsic magnetic field of the material, H is 
the applied field, and M is the magnetization.  At these 
temperatures we expect our material to be paramagnetic because of the 50% lanthanum 
doping suppressing the Neél temperature to zero as seen in Figure 8.  Therefore we can 
use an expression for the magnetism of paramagnetic materials: 
 
M = | H,   
 
where χ is the magnetic susceptibility.  Substituting into the equation above: 
 
B = H + 4r | H = (1 + 4r | ) H. 
 
The Curie-Weiss Law states: 
 
| = T - Tc

C ;
 

 
and is the general law for localized paramagnetism, where C is the Curie constant, and Tc 
is the Curie temperature.  In our case, this law simplifies to:  
 
| = T

C .  
 
Substituting this quantity from the equation for B above,  
 
B = 1 + 4r T

Cc mH.
 

Figure 14: Linear 
magnetostriction coefficient 

versus magnetic field. 
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Now we must engage our definition of magnetostriction: 
 
mV V = 2H

2Vc m
T, P

,
 

 
and some Maxwell relations: 
 

2H
2Vc m

T, P

= 4r
1

2P
- 2Bc m

H, T

= mV V.
 

 
Finally, if we differentiate the above equation for magnetic field (B) with respect to 
pressure, 
 

2P
- 2Bc m

H, T

= 2P
- 2

4r
1 + T

Cc m
H, T

H.
 

 
Noting that the only variable that changes with pressure is the Curie constant we now 
have: 
 
mV V = T

- H
2P
2Cc m

H, T

.
 

 
In this instance ∂C/∂P is constant because we are not varying the pressure of the system, 
and it is now clear that the linear behavior of Figure x shows that our sample is indeed 
paramagnetic at these temperatures.  It is also apparent from Figure x and the above 
expression that the magnetostriction must be temperature independent; otherwise the 
slopes of the magnetostriction coefficients would be change with various values of 
temperature. This temperature independent linearity could be caused by itinerant (or 
metallic) paramagnetism; which is magnetism caused by valence electrons rather than 
electrons bound by atoms.  The valence electrons do not directly affect the structure of 
the lattice and therefore changes in their magnetic moments due to varying temperatures 
would not change the magnetostriction of the material.     

 
 
 
 
 
 
 
 
 
 
 

 
Thermal Expansion 
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 We initially 
measured the thermal 
expansion of 
Ce.5La.5RhIn5 using the 
1.51mm sample, and 
found that a sample of 
such small dimensions 
produces unpleasant data, 
as shown in Figure 15.  A 
sample of this size has a 
thermal expansion 
comparable to noise and 
unavoidable fluctuations 
that are inevitable in 
measurements.  The data 
in Figure 15 has been 
smoothed and 
interpolated, and although 
this improves its aesthetic 
appearance this analysis 
can be deceiving, as the 
oscillations look too regular to be noise.  However, calculations performed without any 
smoothing showed that these oscillations are undoubtedly noise.  Another feature of this 
data that makes it unreliable is the fact that it cannot be easily extrapolated to zero.  This 
breaks fundamental laws of thermodynamics and is not believable.  
 Luckily we were 
able to acquire another 
sample with much larger 
dimensions: 3.06mm along 
the c-axis.  There is one 
difference, however, in that 
the 3.06mm sample is doped 
with 40% lanthanum where 
our previous sample is 
doped with 50% lanthanum.  
This difference is not too 
significant; CeRhIn5 doped 
with 40% La is still within 
the range of the quantum 
phase transition, and will 
still supply satisfactory data 
for studying this transition.   
Our results are shown for 
fields of zero and 18T in 
Figure 16, and the improvement over the smaller sample is phenomenal.  First of all, the 
data shift regularly with applied magnetic field, where the above data from the 1.51mm 

Figure 15: Linear thermal expansion coefficient of Ce.5La.5RhIn5  versus 
temperature. 

Figure 16: Linear thermal expansion coefficient of 
Ce.6La.4RhIn5  versus temperature. 
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sample cross each other often and do not seem to have much of a tendency to arrange 
with field.  Furthermore, the data in Figure 16 is not smoothed (interpolation is necessary 
to perform the calculation) it follows a very distinct path and smoothing would only 
suppress the real data. An important feature to note is the minimum at 20K.  A similar 
feature is seen in the linear thermal expansion along the c-axis of CeRhIn5 as measured 
by Takeuchi et al. (Figure 7), which is attributed to crystalline electric field contributions.  
This consistency with published data gives us confidence in our own. Other reassuring 
attributes of our data are that the behavior of the coefficient of thermal expansion above 
100K very closely mimics that of a normal metal, and, most importantly, the data appears 
to extrapolate nicely to zero. 
  An interesting addition to data published by Takeuchi et al. is that there is a 
progression of the feature at 20K from a negative thermal expansion (shrinking material) 
to a positive thermal expansion (expanding material) induced solely by applying field.  
Another important characteristic of these data is the maximum that occurs around 4.6K, 
which could correspond to the hump at 2.5K 
seen in heat capacity data for a 50% La sample in 
the paper by Light and Cornelius (see Figure 8 
above). In their paper, this hump was attributed 
to short range ordering, and tends to become 
more substantial with field.  It is hard to tell 
whether this is the trend in our data, but it is not 
unlikely.  This maximum is more easily seen in 
data taken at 10T from 1.7K to 6K shown in 
Figure 17 with a very simple polynomial 
extrapolation that hits 0K perfectly.  (The data is 
plotted as ∂C/∂T, which ultimately has the same 
shape as αc because the cell effect makes no 
significant contribution at these temperatures.) 
Another possible explanation for this apparent maximum is a reappearance of the Neél 
temperature.  Because this sample is doped with 40% La it is possible that it is still in a 
region below the quantum critical point, where a transition into an antiferromagnetic state 
may occur at very low temperatures.  It is possible, however, that the temperature at 
which this maximum is observed is too high to be a possible magnetic phase transition.   
  
 
Conclusion 
 
 It is clear that more data is needed for definite results of this experiment.  Luckily, 
this project is still in progress and further data is being collected daily, including 
magnetostriction data for the 3.06mm sample, thermal expansion at lower temperatures, 
another measurement of the cell effect in order to improve calculations, and—most 
importantly—a rotation of the sample to analyze the a/b-axes and calculate the 
volumetric thermal expansion and magnetostriction of Ce.6La.4RhIn5 and possibly 
Ce.5La.5RhIn5.   
 
  

Figure 17: ∂C/∂T versus 
temperature for Ce.6La.4RhIn5 at 

10T 
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